

NEW APPLICATION

RECEIVED August 28, 2009 2009 SEP - 4 P 3: 45

To: Arizona Corporation Commission Official Corporation Commission

RR-03639A-09-0430

Railroad Safety Attn: Chris Watson

1200 W. Washington Street

Phoenix, AZ 85007

SEP 4 2009

DOCKETED

Arizona Corporation Commission Attachments: Application for UPRR Roadway CrossingETED BY

at Williams Field Road (UPRR Folder

No. 2538-71)

Subject:

1) 8 1/2"x11" conceptual drawing ROL

2) Construction cost estimate of grade separated crossing

Executed agreement between Town of Gilbert and UPRR dated 4/22/09

4) Cooley Station Traffic Impact Study by TASK Engineering

Project: Recker and Williams Field Road Improvements

Number:

Project Town of Gilbert CIP ST062 & ST095 AZTEC Project No. AZE0703

UPRR Folder No. 2538-71

From: Robert Lyons, P.E.

This memo is submitted to the Arizona Corporation Commission (ACC) as an application to request an upgrade to an existing Union Pacific Railroad (UPRR) crossing, on behalf of the Town of Gilbert. Below is information based on the most current ACC application instructions.

1. Location of crossing

The project improvements include widening Williams Field Road to a six lane roadway with a 16-foot wide raised median across the UPRR right-of-way. The UPRR and Williams Field Road crossing is approximately 1,600 feet east of the Higley Road centerline. Representatives from the ACC, UPRR, Town of Gilbert, and consultants attended a field meeting on August 27, 2007.

2. Why the crossing is needed

The railroad crossing at Williams Field Road is an existing four lane crossing. Projected traffic volumes on Williams Field Road require the addition of more lanes on Williams Field Road. This project includes widening of the existing crossing.

3. Why the existing crossing cannot be grade separated

With the proposed improvements to Williams Field Road, the location of the at-grade crossing remains unchanged. A grade separation would have the following consequences: 1) Impact to 69kV and 230kV overhead power lines currently running parallel to the railroad; 2) Impact to underground utilities in Williams Field Road that cannot support 30 feet of additional embankment needed for a gradeseparated crossing. Among these utilities are a 12-inch waterline, a 24-inch gravity sewer line, a proposed 16-inch waterline, and the potential impact to existing gas, power, and telecommunication lines; 3) There is insufficient right-of-way to accommodate the 30-foot high embankment slopes along Williams Field Road; 4) There is inadequate distance between the railroad and the Lyons Gate entrance off of Williams Field Road (approximately 420 feet east of the tracks) and between the railroad and the local business entrance (approximately 420 feet west of the tracks) to raise the roadway grade over the railroad without violating sight-distance requirements; and 5) Elevating Williams Field Road would cause undesirable visual and noise impacts for the adjacent land uses, which include residential.

4. Type of warning devices to be installed

The warning devices for east bound and west bound traffic included in the design are as follows: gates with flashing lights will be installed outside the roadway near the sidewalk; cantilever flashing railroad signals will be installed within the median and outside the roadway near the sidewalk; railroad crossing warning signs will be placed per MUTCD, Part 8 standards; and the UPRR equipment shed will be relocated.

Yering actions of comparies of publicates of the purposes of the property of t

5. Type of warning devices currently installed at crossing

The warning devices currently installed at the crossing include gates with flashing lights located outside the existing roadway. These will be removed by UPRR when they install the new warning devices described in question 4 above.

6. Who will maintain the crossing warning devices

UPRR will own and maintain the physical elements of the crossing (crossing surface, gates, flashing lights). The Town of Gilbert will own and maintain the approaching surface, signing and pavement markings on Williams Field Road.

7. Who is funding the project

The Town of Gilbert is funding this project.

Below are responses to additional questions that may also be requested by the ACC:

8. Provide average daily traffic counts for this location.

Existing (2008):

12,009 vehicles per day, from the Town of Gilbert traffic count web page,

http://www.ci.gilbert.az.us/traffic/counts08.cfm

2025:

29,020 vehicles per day (August 16, 2006; revised November 16, 2006,

Cooley Station Traffic Impact Study, by Task Engineering.)

9. Please describe the current level of service (LOS) at this intersection, and what the LOS will be with the proposed alterations to the intersection.

Current LOS:

B/C

Proposed LOS:

B/C

10. Provide any traffic studies done by the road authorities for each area.

Task Engineering prepared the *August 16, 2006, revised November 16, 2006, Cooley Station Traffic Impact Study.* This report is attached to this memo.

11. Provide distances in miles to the next public crossing on either side of the proposed project location. Are any of these grade separations?

The next roadway crossing to the northwest is at Higley Road, which is an at-grade crossing, located approximately 2.000-feet from the Williams Field Road/UPRR crossing.

The next roadway crossing to the southeast is at Recker Road, which is an at-grade crossing, located approximately one mile from the Williams Field Road/UPRR crossing.

12. How and why was grade separation not decided on at this time? Please provide any studies that were done to support these answers.

The Town's design consultant evaluated the impacts and estimated costs associated with a grade-separation. The items listed in response to Question No. 3 support the request to improve the existing at-grade crossing at this location.

In addition, the following economic items (http://www.fra.dot.gov/us/Content/817, page 35) were considered:

Potential Economic Benefit	Response
Eliminating train/vehicle collisions (including the resultant property damage and medical costs, and liability)	As May 31, 2009, no accidents have been reported at this crossing over the last 20 years per the Federal Railway Administration website, http://safetydata.fra.dot.gov/OfficeofSafety/publicsite/Query/gxrtop50.aspx .
Savings in highway-rail grade crossing surface and crossing signal installation and maintenance costs	This would not be a significant savings because the surface and signal work is about \$1.2M compared to nearly \$28M for a grade separation.
Driver delay cost savings	Based on 1 mile of train, 6 times per day, at 45 mph, driver delay cost savings would be relatively minute (average delay time is 1.3 minutes).
Costs associated with providing increased highway storage capacity (to accommodate traffic backed up by a train)	Storage capacity required for the railroad has not been evaluated and therefore costs savings cannot be determined.
Fuel and pollution mitigation cost savings (from idling queued vehicles)	Based on 1 mile of train, 6 times per day, at 45 mph, fuel and pollution mitigation cost savings would be relatively minute.
Effects of any "spillover" congestion on the rest of the roadway system	Spillover congestion may impact eastbound and westbound queues of adjacent business access west towards Higley Road and business access east towards Recker Road.
The benefits of improved emergency access	See response to question 18.
The potential for closing one or more additional adjacent crossings	Adjacent streets Higley Road and Recker Road cannot be closed because they are major arterials of regional significance and provide access to major destinations (L202 freeway, Higley High School and Higley Elementary Unified School District).
Possible train derailment costs	No derailments have been reported per http://safetydata.fra.dot.gov/OfficeofSafety/default.aspx , and therefore associated cost savings are not possible to determine.

13. If this crossing was grade separated, provide a cost estimate of the project.

The total estimated construction, design, construction administration, and right-of-way cost is estimated to be \$31,884,881. The details of this estimate are attached to this memo.

14. Please describe what the surrounding areas are zoned for near this intersection. I.e. Are there going to be new housing developments, industrial parks etc.

The surrounding area includes a mixture of multi-family/low density residential (MF/L), multi-family/medium density residential (MF/M), single family-6 residential (SF-6), single family-7 residential (SF-7), single family detached residential (SF-D), Gateway Village Center (GVC), Gateway Business Center (GBC), community commercial (CC), general commercial (GC), shopping center (SC) and

public facility/institutions (PF/I), from the Town of Gilbert Planning & Development web page, http://www.ci.gilbert.az.us/planning/pdf/zoningmap_11-08.pdf. The area east of the crossing is currently being developed and plans have been submitted for "Cooley Station, Village Center and Business Park".

15. Please supply the following: number of daily train movements through the crossing, speed of the trains, and the type of movements being made (i.e. thru freight or switching). Is this a passenger train route?

From a 3/31/08 e-mail from Jim Smith/UPRR, the track is used for through freight service and there is an average of 6 trains per day. Maximum train speed is 60 mph. The Union Pacific does not have any plans to construct a second track at this crossing at this time but will need to maintain the ability to add a second track if future expansion is needed. This is not a passenger train route. This information was also confirmed with Aziz Aman/UPRR on 5/28/09.

16. Please provide the names and locations of all schools (elementary, junior high and high school) within the area of the crossing.

The crossing is within two school districts, Higley Unified School District No. 60 and Gilbert Unified School District No. 41. Schools located within these districts and a three mile radius of the crossing are listed as follows:

Elementary: Higley Elementary - 3391 E. Vest Avenue

Chaparral Elementary – 3380 E. Frye Road Cortina Elementary – 19680 S. 188th Street Eagles Aerie School – 17019 S. Greenfield Road

Gateway Pointe Elementary – 2069 S. De La Torre Drive Centennial Elementary – 3507 S. Ranch House Parkway

Coronado Elementary - 4333 S. Deanza Blvd

Power Ranch Elementary – 4351 S. Ranch House Parkway

SanTan Elementary – 3443 E. Calistoga Drive

Surrey Garden Christian School – 1424 S. Promenade Lane

High School: Higley High School - 4068 E. Pecos Road

Perry High School – 1919 E. Queen Creek Road Williams Field High School – 2076 S. Higley Road

Surrey Garden Christian School – 1424 S. Promenade Lane

17. Please provide school bus route information concerning the crossing, including the number of times a day a school bus crosses this crossing.

Per a phone conversation with Mike McGuire, the Transportation Routing Coordinator for the Higley School District, there are 39 daily trips through this crossing.

18. Please provide information about any hospitals in the area and whether the crossing is used extensively by emergency service vehicles.

The main Hospitals and health facilities are as follows:

Hospitals: Gilbert Hospital - 5656 S Power Road

Mercy Gilbert Medical Center - 3555 S. Val Vista Dr.

Health Facilities: Urgent Care Express - 920 E. Williams Field

East Valley Urgent Care - 641 W. Warner Road

No data is available for the number of emergency vehicles crossing at this location.

19. Please provide total cost of improvements to each crossing.

This project's street improvement cost at the RR crossing is estimated at \$139,000. The UPRR's estimated cost to the crossing is as follows:

	Railroad track & surface: Railroad signal:	\$304,579 \$695,104
	UPRR Sub-Total: Roadway Improvements:	\$999,683 \$139,000
•	Total:	\$1,138,683

These costs are based on the agreement dated 4/22/2009.

20. Provide any information as to whether vehicles carrying hazardous materials utilize this crossing and the number of times a day they might cross it.

No data is available for the number of vehicles carrying hazardous materials at this location.

21. Please provide the posted vehicular speed limit for the roadway. 45 mph

22. Do any buses (other than school buses) utilize the crossing, and how many times a day do they cross the crossing.

Valley Metro Route 156 (Chandler Blvd/Williams Field Road) utilizes the crossing an average of 69 times per day, Monday thru Friday, and 63 times per day Saturday and Sunday.

c: Rick Allred/Town of Gilbert Project File: AZE0703 Attachment 1

8 ½" x 11" Conceptual Drawing

Attachment 2

Construction Cost Estimate of Grade Separate Crossing

Construction Cost Estimate of Grade Separated Crossing Williams Field Road/UPRR Crossing

Williams Field Rd-Over-pass @ UPRR crossing

ltem	Quantity	Unit	Unit Cost	Cost
Excavation	3,780.00	CY	\$5.00	\$18,900.00
Fill	151,062.00	CY	\$5.00	\$755,310.00
Bridge	18,000.00	SF	\$200.00	\$3,600,000.00
*Retaining Wall	59,000.00	SF	\$60.00	\$3,540,000.00
Right-of-Way	0.00	SF	\$7.00	\$0.00
Subgrade Preparation	27,000.00	SY	\$3.00	\$81,000.00
Temporary Construction Easement	172,000.00	SF	\$5.00	\$860,000.00
ABC 18"	17,948.00	SY	\$20.00	\$358,960.00
AC 1-1/2"	17,948.00	SY	\$9.00	\$161,532.00
AC 2-1/2"	17,948.00	SY	\$11.00	\$197,428.00
Tack Coat	28.00	TON	\$800.00	\$22,400.00
Vertical Curb & Gutter	4,000.00	LF	\$18.00	\$72,000.00
Vertical Curb	3,400.00	LF	\$15.00	\$51,000.00
Concrete Sidewalk	21,780.00	SF	\$5.00	\$108,900.00
Driveway Entrance	4.00	EA	\$10,000.00	\$40,000.00
Median Nose	4.00	EA	\$1,000.00	\$4,000.00
Median Brick Pavers	28,000.00	SF	\$20.00	\$560,000.00
Landscaping	1.00	LS	\$500,000.00	\$500,000.00
Relocate Sewer Mains	1,100.00	LF	\$120.00	\$132,000.00
Relocate Water Mains	5,200.00	LF	\$100.00	\$520,000.00
Other Utility Relocations	1.00	LS	\$2,000,000.00	\$2,000,000.00
Drainage	1.00	LS	\$200,000.00	\$200,000.00
Signing	1.00	LS	\$20,000.00	\$20,000.00
Striping	1.00	LS	\$15,000.00	\$15,000.00
Traffic Control	1.00	LS	\$300,000.00	\$300,000.00
Impact to adjacent Property Owners	1.00	LS	\$1,000,000.00	\$1,000,000.00
Electrical/Lighting	1.00	LS	\$500,000.00	\$500,000.00
230 kV Relocation	1.00	L5	\$5,000,000.00	\$5,000,000.00
12 kV & 64 kV Relocation	1.00	LS	\$3,000,000.00	\$3,000,000.00
	· · · · · · · · · · · · · · · · · · ·		SUB TOTAL - WFR	\$23,618,430.00

General Items

ltem	Quantity	Unit	Unit Cost	Cost
Mobilization (10%)	1.00	LS	\$2,361,843.00	\$2,361,843.00
Administration (15%)	1.00	LS	\$3,542,765.00	\$3,542,765.00
Design (10%)	1.00	LS	\$2,361,843.00	\$2,361,843.00
			SUB TOTAL - GENERAL	\$8,266,451.00
			TOTAL	\$31,884,881.00

 $^{^{*}}$ Due to existing and future development, retaining wall is required for entire grade separation

Attachment 3

Executed Agreement between Town of Gilbert and UPRR dated 4-22-09

April 22, 2009

UPRR Folder No. 2538-71

MR PAUL MOOD TOWN OF GILBERT 50 E CIVIC CENTER DR GILBERT AZ 85296

Dear Mr. Mood:

Attached is your original copy of a <u>Supplemental Agreement</u>, fully executed on behalf of the Railroad Company.

In order to protect the Railroad Company's property as well as for safety reasons, it is imperative that you notify the Railroad Company's Manager of Track Maintenance and the Communications Department:

Aziz Aman Manager Public Projects Union Pacific Railroad Company 2073 East Jade Drive Chandler, AZ 85286 Phone: 480-415-2364 aaman@up.com

Fiber Optics Hot Line 1-800-336-9193

If you have any questions, please contact me.

Sincerely Yours,

PAUL G. FARRELL

Senior Manager Contracts

phone: (402) 544-8620 e-mail: pgfarrell@up.com

> Real Estate Department UNION PACIFIC RAILROAD COMPANY 1400 Douglas Street, MS 1690 Omaha, Nebraska 68179-1690 fax: 402-501.0340

UPRR Folder No.: 2538-71

SUPPLEMENTAL AGREEMENT

BETWEEN

UNION PACIFIC RAILROAD COMPANY

AND THE

TOWN OF GILBERT

COVERING THE

IMPROVEMENT, RECONSTRUCTION AND WIDENING OF THE EXISTING WILLIAMS FIELDS ROAD AT-GRADE PUBLIC ROAD CROSSING

ΑT

RAILROAD MILE POST 932.30 - PHOENIX SUBDIVISION DOT NO.: 753-711Y

AT OR NEAR

GILBERT, MARICOPA COUNTY, ARIZONA

UPRR Folder No.: 2538-71

UPRR Audit No.: 5 180 909

SUPPLEMENTAL AGREEMENT

Williams Fields Road – DOT No.: 753-711Y UPRR Mile Post 932.30 – Phoenix Subdivision Gilbert, Maricopa County, Arizona

Contract Number 2009-7003-0309

RECITALS:

By instrument dated May 24, 1977, Southern Pacific Transportation Company and the County of Maricopa entered into an agreement identified as Railroad's Folder No. 2538-71, UPRR Audit No. S180909 (the "Original Agreement") covering the construction, maintenance, use and grant of rights for the new Williams Field Road at-grade public road crossing, (DOT No. 753-711Y), located at Railroad Mile Post 932.30 on its Phoenix Subdivision near Gilbert, Maricopa County, Arizona (the "Roadway").

The Railroad named herein is successor in interest to the Southern Pacific Transportation Company and the Town now has jurisdiction and control of Williams Field Road and is successor in interest to the County of Maricopa under the Original Agreement.

The Town now desires to undertake as its project (the "Project") the improvement, reconstruction and widening of the Roadway that was constructed under the Original Agreement. The structure, as improved, reconstructed and widened is hereinafter the "Roadway" and where the Roadway crosses the Railroad's property is the "Crossing Area."

The right of way granted by Southern Pacific Transportation Company to the County of Maricopa under the terms of the Original Agreement is not sufficient to allow for the improvements, reconstruction and widening of the road crossing constructed under the Original Agreement. Therefore, under this Agreement, the Railroad will be granting an additional right of way right to the Town to facilitate the improvements, reconstruction and widening of the road crossing. The portion of Railroad's property that Town needs a right to use in connection with the road crossing (including the right of way area covered under the Original Agreement) is shown on the Railroad Location Print marked Exhibit A, Detailed Print marked Exhibit A-1, described in the Legal Description marked Exhibit A-3, with each exhibit being attached hereto and hereby made a part hereof (the "Crossing Area").

The Railroad and the Town are entering into this Agreement to cover the above.

AGREEMENT:

NOW, THEREFORE, it is mutually agreed by and between the parties hereto as follows:

ARTICLE 1 - LIST OF EXHIBITS

The exhibits below are attached hereto and hereby made a part hereof.

Exhibit A	Railroad Location Print
Exhibit A-1	Detailed Print
Exhibit A-2	Legal Description
Exhibit A-3	Illustrative Print of Legal Description
Exhibit B	Terms and Conditions
Exhibit B-1	Insurance Requirements
Exhibit C	Railroad's Track & Surface Material Estimate
Exhibit C-1	Railroad's Signal Material Estimate
Exhibit D	Railroad Form of Contractor's Right of Entry Agreement

ARTICLE 2 - EXHIBITS B AND B-1.

The general terms and conditions marked **Exhibit B**, and the Contractor's insurance requirements marked **Exhibit B-1**, are attached hereto and hereby made a part hereof.

ARTICLE 3 - RAILROAD GRANTS RIGHT.

For and in consideration **SEVENTY-SIX THOUSAND EIGHTY-FOUR DOLLARS** (\$76,084.00) to be paid by the Town to the Railroad upon the execution and delivery of this Agreement and in further consideration of the Town's agreement to perform and abide by the terms of this Agreement including all exhibits, the Railroad hereby grants to the Town the right to establish or reestablish, construct or reconstruct, maintain, repair and renew the road crossing over and across the Crossing Area.

ARTICLE 4 - DEFINITION OF CONTRACTOR

For purposes of this Agreement the term "Contractor" shall mean the contractor or contractors hired by the Town to perform any Project work on any portion of the Railroad's property and shall also include the contractor's subcontractors and the contractor's and subcontractor's respective employees, officers and agents.

ARTICLE 5 - CONTRACTOR'S RIGHT OF ENTRY AGREEMENT - INSURANCE

- A. If the Town will be hiring a Contractor to perform any work involving the Project (including initial construction and any subsequent relocation or maintenance and repair work), the Town shall require the Contractor to:
 - execute the Railroad's then current Contractor's Right of Entry Agreement
 - obtain the then current insurance required in the Contractor's Right of Entry Agreement; and
 - provide such insurance policies, certificates, binders and/or endorsements to the Railroad before allowing any Contractor to commence any work in the Crossing Area

or on any other Railroad property. The Railroad's current insurance requirements are described in **Exhibit B-1**, attached hereto and hereby made a part hereof.

- B. The Railroad's current Contractor's Right of Entry Agreement is marked **Exhibit D**, attached hereto and hereby made a part hereof. The Town confirms that it will inform its Contractor that it is required to execute such form of agreement and obtain the required insurance before commencing any work on any Railroad property. Under no circumstances will the Contractor be allowed on the Railroad's property without first executing the Railroad's Contractor's Right of Entry Agreement and obtaining the insurance set forth therein and also providing to the Railroad the insurance policies, binders, certificates and/or endorsements described therein.
- C. All insurance correspondence, binders, policies, certificates and/or endorsements shall be sent to:

Senior Manager - Contracts Union Pacific Railroad Company Real Estate Department 1400 Douglas Street, Mail Stop 1690 Omaha, NE 68179-1690 UPRR Folder No.: 2538-71

D. If the Town's own employees will be performing any of the Project work, the Town may self-insure all or a portion of the insurance coverage subject to the Railroad's prior review and approval.

ARTICLE 6 - FEDERAL AID POLICY GUIDE

- A. If the Town will be receiving any federal funding for the Project:
 - the current rules, regulations and provisions of the Federal Aid Policy Guide as contained in 23 CFR 140, Subpart I and 23 CFR 646, Subparts A and B are incorporated into this Agreement by reference, and
 - construction work by the Town and Contractor shall be performed, and any reimbursement to the Railroad for work it performs, shall be made in accordance with the Federal Aid Policy Guide.
- B. If federal funding is involved, as provided in 23 CFR 646.210(b)(2), the Project is of no ascertainable benefit to the Railroad and the Railroad shall not be obligated to pay or contribute to any Project costs.

ARTICLE 7 - WORK TO BE PERFORMED BY THE RAILROAD

- A. The work to be performed by the Railroad, at the Town's sole cost and expense, is described in the Railroad's Material and Force Account Estimates:
 - Railroad's Track & Surface Material Estimate dated January 5, 2009, in the amount of \$304,579.00, marked **Exhibit C**, and
 - Railroad's Signal Material Estimate dated January 7, 2009, in the amount of \$695,104.00, marked Exhibit C-1,

each attached hereto and hereby made a part hereof (collectively the "Estimate"). As set forth in the Estimate, the Railroad's combined estimated cost for the Railroad's work

- associated with the Project is (\$999,683.00).
- B. The Railroad, if it so elects, may recalculate and update the Estimate submitted to the Town in the event the Town does not commence construction on the portion of the Project located on the Railroad's property within six (6) months from the date of the Estimate.
- C. The Town acknowledges that the Estimate does not include any estimate of flagging or other protective service costs that are to be paid by the Town or the Contractor in connection with flagging or other protective services provided by the Railroad in connection with the Project. All of such costs incurred by the Railroad are to be paid by the Town or the Contractor as determined by the Railroad and the Town. If it is determined that the Railroad will be billing the Contractor directly for such costs, the Town agrees that it will pay the Railroad for any flagging costs that have not been paid by any Contractor within thirty (30) days of the Contractor's receipt of billing.
- D. The Town agrees to reimburse the Railroad for one hundred percent (100%) of all actual costs incurred by the Railroad in connection with the Project including, but not limited to, actual costs of preliminary engineering review, construction inspection, procurement of materials, equipment rental, manpower and deliveries to the job site and all of the Railroad's normal and customary additives (which shall include direct and indirect overhead costs) associated therewith.

ARTICLE 8 - PLANS

- A. The Town, at its expense, shall prepare, or cause to be prepared by others, the detailed plans and specifications and submit such plans and specifications to the Railroad's Assistant Vice President Engineering Design, or his authorized representative, for review and approval. The plans and specifications shall include all Roadway layout specifications, cross sections and elevations, associated drainage, and other appurtenances.
- B. The final one hundred percent (100%) completed plans that are approved in writing by the Railroad's Assistant Vice President Engineering—Design, or his authorized representative, are hereinafter referred to as the "Plans". The Plans are hereby made a part of this Agreement by reference.
- C. No changes in the Plans shall be made unless the Railroad has consented to such changes in writing.
- D. Notwithstanding the Railroad's approval of the Plans, the Railroad shall not be responsible for the permitting, design, details or construction of the Roadway.

ARTICLE 9 - EFFECTIVE DATE; TERM; TERMINATION.

- A. This Agreement shall become effective as of the date first herein written, or the date work commences on the Project, whichever is earlier, and shall continue in full force and effect for as long as the Structure remains on the Railroad's property.
- B. The Railroad, if it so elects, may terminate this Agreement effective upon delivery of written notice to the Town in the event the Town does not commence construction on the portion of the Project located on the Railroad's property within twelve (12) months from the date of this Agreement, or from the date that the Railroad has executed this Agreement and returned it to

the Town for its execution, whichever is applicable.

C. If the Agreement is terminated as provided above, or for any other reason, the Town shall pay to the Railroad all actual costs incurred by the Railroad in connection with the Project up to the date of termination, including, without limitation, all actual costs incurred by the Railroad in connection with reviewing any preliminary or final Project Plans.

ARTICLE 10 - CONDITIONS TO BE MET BEFORE TOWN CAN COMMENCE WORK.

Neither the Town nor the Contractor may commence any work within the Crossing Area or on any other Railroad property until:

- The Railroad and Town have executed this Agreement.
- The Railroad has provided to the Town the Railroad's written approval of the Plans.
- Each Contractor has executed Railroad's Contractor's Right of Entry Agreement and has obtained and/or provided to the Railroad the insurance policies, certificates, binders, and/or endorsements set forth in the Contractor's Right of Entry Agreement.

ARTICLE 11 - SIGNAL MAINTENANCE.

The Town agrees to reimburse the Railroad the cost of future maintenance of the automatic grade-crossing protection within thirty (30) days of the Town's receipt of billing.

ARTICLE 12 - AGREEMENT IS SUPPLEMENTAL TO ORIGINAL AGREEMENT

This Supplement is supplemental to the Original Agreement, and nothing contained in this Supplement shall be construed as amending or modifying the Original Agreement except has herein specifically provided.

ARTICLE 13 - SPECIAL PROVISION

The Town confirms that, under Section 3 of the Original Agreement, the Railroad reserved the right to construct future transportation facilities at this location. Accordingly, the Town agrees that, if the Railroad elects at some future date to place a second track on either side of the existing track at this location, the Railroad has the right to construct such track without obtaining the Town's consent pursuant to the terms and conditions set forth in Section 3 of the Original Agreement.

IN WITNESS WHEREOF, the parties have caused this Agreement to be duly executed in duplicate as of the date first herein written.

UNION PACIFIC RAILROAD COMPANY (Federal Tax ID #94-6001323)

> JAMES P. GADE Director Contracts

WITNESS:	70 VN OF GILBERT	
Catheine a Templa	By	_
	Title Storen M. Berman Why	د د -
(Seal)	Pursuant to Resolution/Order No.	
	dated: ,200	-
	hereto attached.	-

EXHIBIT A

To Supplemental Agreement

Cover Sheet for the Railroad Location Print

RAILROAD LOCATION PRINT OF AN EXISTING AT-GRADE PUBLIC ROAD CROSSING RECONSTRUCTION, WIDENING & IMPROVEMENT PROJECT

RAILROAD WORK TO BE PERFORMED:

- 1. Re-lay 400-feet of track; Install 160-feet of concrete road crossing panels; Install 110 cross ties; Install 3 carloads of ballast; and other track & surface facilities and materials.
- 2. Install automatic flashing light crossing signals with gates and cantilevers; and other signal facilities and materials.
- 3. Engineering Design Review & Flagging.

EXHIBIT "A"

UNION PACIFIC RAILROAD COMPANY

PHOENIX SUBDIVISION
MILE POST 932.30
GPS: N 33° 18.4178', W 111° 42.9460'
GILBERT, MARICOPA CO.. AZ.

To accompany a Supplemental Agreement with the

TOWN OF GILBERT

covering an existing at-grade public road crossing improvement, reconstruction and widening project.

Folder No. 2538-71

Date: February 2, 2009

WARNING

IN ALL OCCASIONS, EP. COMMUNICATIONS DEPARTMENT MEST BE CONTACTED IN ADVANCE OF ANY WORK TO DETERMINE ENINTENCE AND LOCATION OF FIBER OPTIC CABLE PHONE, 1-(800) 336-9193

EXHIBIT A-1

To Supplemental Agreement

Cover Sheet for the Detailed Print

EXHIBIT A-2

To Supplemental Agreement

Cover Sheet for the Legal Description

EXHIBIT A Legal Description Right-of-Way

A parcel of land located in the Southwest Quarter of Section 26 and Northwest Quarter of Section 35, Township 1 South, Range 6 East of the Gila and Salt River Meridian, Maricopa County, Arizona, more particularly described as follows:

Commencing at the Southwest Corner of said Section 26, a Brass cap in handhole, whence the South Quarter Corner of said Section 26, a Brass cap in handhole, bears N 89° 18' 45" E, a distance of 2637.88 feet;

THENCE along the South line of said Section 26, N 89° 18' 45" E, a distance of 1432.56 feet to the Westerly line of the Union Pacific Railroad Company Right-of-Way (UPROW), according to an Unrecorded map filed in Right-of-Way Serial No. AZPHX-0086615, and to the TRUE POINT OF BEGINNING;

THENCE leaving said South line, along said Westerly line, N 53° 36' 28" W, a distance of 149.27 feet to the North line of the South 90.00 feet of said Section 26;

THENCE leaving said Westerly line, along said North line, N 89° 18' 45" E, a distance of 331.72 feet to the Easterly line of said UPROW;

THENCE leaving said North line, along said Easterly line, S 53° 36' 28" E, a distance of 298.54 feet to the South line of the North 90.00 feet of said Section 35;

THENCE leaving said Easterly line, along said South line, S 89° 18' 45" W, a distance of 331.72 feet to said Westerly line;

THENCE leaving said South line, along said Westerly line, N 53° 36' 28" W, a distance of 149.27 feet to the TRUE POINT OF BEGINNING.

Containing 59,709 square feet (1.37 Ac.) ±.

This Description is located within an area surveyed by AZTEC in May-July 2007. And is also based on Maricopa County GDACS. Monumentation as noted in this Description is within acceptable standards (as defined in "Arizona Boundary Survey Minimum Standards") based on said survey.

EXHIBIT A-3

To Supplemental Agreement

Cover Sheet for the Illustrative Print of the Legal Description

EXHIBIT B

To Supplemental Agreement

Cover Sheet for the Terms and Conditions

EXHIBIT B

TO SUPPLEMENTAL AGREEMENT

TERMS AND CONDITIONS

SECTION 1. CONDITIONS AND COVENANTS

- a) The Railroad makes no covenant or warranty of title for quiet possession or against encumbrances. The Town shall not use or permit use of the Crossing Area for any purposes other than those described in this Agreement. Without limiting the foregoing, the Town shall not use or permit use of the Crossing Area for railroad purposes, or for gas, oil or gasoline pipe lines. Any lines constructed on the Railroad's property by or under authority of the Town for the purpose of conveying electric power or communications incidental to the Town's use of the property for highway purposes shall be constructed in accordance with specifications and requirements of the Railroad, and in such manner as not adversely to affect communication or signal lines of the Railroad or its licensees now or hereafter located upon said property. No nonparty shall be admitted by the Town to use or occupy any part of the Railroad's property without the Railroad's written consent. Nothing herein shall obligate the Railroad to give such consent.
- b) The Railroad reserves the right to cross the Crossing Area with such railroad tracks as may be required for its convenience or purposes in such manner as not unreasonably to interfere with its use as a public highway. In the event the Railroad shall place tracks upon the Crossing Area, the Town shall, at its sole cost and expense, modify the highway to conform with the rail line.
- c) The right hereby granted is subject to any existing encumbrances and rights (whether public or private), recorded or not, and also to any renewals thereof. The Town shall not damage, destroy or interfere with the property or rights of nonparties in, upon or relating to the railroad property, unless the Town at its own expense settles with and obtains releases from such nonparties.
- d) The Railroad reserves the right to use and to grant to others the right to use the Crossing Area for any purpose not inconsistent with the right hereby granted, including, but not by way of limitation, the right to construct, reconstruct, maintain, operate, repair, alter, renew and replace tracks, facilities and appurtenances on the property; also the right to cross the Crossing Area with all kinds of equipment. The Railroad further reserves the right to attach signal, communication or power lines to any highway facilities located upon the property, provided that such attachments shall comply with Town's specifications and will not interfere with the use of the Crossing Area.
- e) So far as it lawfully may do so, the Town will assume, bear and pay all taxes and assessments of whatsoever nature or kind (whether general, local or special) levied or assessed upon or against the Crossing Area, excepting taxes levied upon and against the property as a component part of the Railroad's operating property.
- f) If any property or rights other than the right hereby granted are necessary for the construction, maintenance and use of the Roadway and its appurtenances, or for the performance of any work in connection with the Project, the Town will acquire all such other property and rights at its own expense and without expense to the Railroad.

SECTION 2. CONSTRUCTION OF ROADWAY

- a) The Town, at its expense, will apply for and obtain all public authority required by law, ordinance, rule or regulation for the Project, and will furnish the Railroad upon request with satisfactory evidence that such authority has been obtained.
- b) Except as may be otherwise specifically provided herein, the Town, at its expense, will furnish all necessary labor, material and equipment, and shall construct and complete the Roadway and all appurtenances thereof. The appurtenances shall include, without limitation, all necessary and proper highway warning devices (except those installed by the Railroad within its right of way) and all necessary drainage facilities, guard rails or barriers, and right of way fences between the Roadway and the railroad tracks. Upon completion of the Project, the Town shall remove from the Railroad's property all temporary structures and false work, and will leave the Crossing Area in a condition satisfactory to the Railroad.
- c) All construction work of the Town upon the Railroad's property (including, but not limited to, construction of the Roadway and all appurtenances and all related and incidental work) shall be performed and completed in a manner satisfactory to the Assistant Vice President Engineering Design of the Railroad or his authorized representative and in accordance with the Plans, and other guidelines furnished by the Railroad.
- d) All construction work of the Town shall be performed diligently and completed within a reasonable time, and in any event within three (3) years from the effective date of this Agreement, or within such further period of time as may be specified in writing by the Railroad's Assistant Vice President Engineering Design. No part of the Project shall be suspended, discontinued or unduly delayed without the Railroad's written consent, and subject to such reasonable conditions as the Railroad may specify. It is understood that the Railroad's tracks at and in the vicinity of the work will be in constant or frequent use during progress of the work and that movement or stoppage of trains, engines or cars may cause delays in the work of the Town. The Town hereby assumes the risk of any such delays and agrees that no claims for damage on account of any delay shall be made against the Railroad.

SE. TION 3. INJURY AND DAMAGE TO PROPERTY

If the Town, in the performance of any work contemplated by this Agreement or by the failure to do or perform anything for which the Town is responsible under the provisions of this Agreement, shall injure, damage or destroy any property of the Railroad or of any other person lawfully occupying or using the property of the Railroad, such property shall be replaced or repaired by the Town at the Town's own expense, or by the Railroad at the expense of the Town, and to the satisfaction of the Railroad's Assistant Vice President Engineering - Design.

SECTION 4. PAYMENT FOR WORK BY THE RAILROAD

- a) Bills for work and materials shall be paid by the Town within thirty (30) days of its receipt thereof. The Railroad will submit to the Town current bills for all work performed by the Railroad and all flagging and other protective services and devices during progress of the Project (unless flagging is to be billed directly to the Contractor). The Railroad will submit final billing within one hundred and twenty (120) days after completion of the Project, provided the Town advises the Railroad of the commencement of the 120-day period by giving the Railroad written notification of completion of the Project.
- b) The Railroad may contract for the performance of any of its work by other than railroad forces. The Railroad shall notify the Town of the contract price within ninety (90) days after it is awarded. Unless the Railroad's work is to be performed on a fixed price basis, the Town shall reimburse the Railroad for the amount of the contract.

SECTION 5. MAINTENANCE AND REPAIRS

- a) The Town shall, at its own sole expense, maintain, repair, and renew, or cause to be maintained, repaired and renewed, the entire Crossing Area and Roadway, except the portions between the track tie ends, which shall be maintained by and at the expense of the Railroad.
- b) If, in the future, the Town elects to have the surfacing material between the track tie ends, or between tracks if there is more than one railroad track across the Crossing Area, replaced with paving or some surfacing material other than timber planking, the Railroad, at the Town's expense, shall install such replacement surfacing, and in the future, to the extent repair or replacement of the surfacing is necessitated by repair or rehabilitation of the Railroad's tracks through the Crossing Area, the Town shall bear the expense of such repairs or replacement.

SECTION 6. CHANGES IN GRADE

If at any time the Railroad shall elect, or be required by competent authority to, raise or lower the grade of all or any portion of the tracks located on the crossing Area, the Town shall, at its own expense, conform the public highway in the Crossing Area to conform with the change of grade of the trackage.

SECTION 7. REARRANGEMENT OF WARNING DEVICES

If the change or rearrangement of any warning device installed hereunder is necessitated for public or Railroad convenience or on account of improvements for either railroad, highway or both, the parties will apportion the expense incidental thereto between themselves by negotiation, agreement or by the order of a competent authority before the change or rearrangement is undertaken.

SECTION 8. SAFETY MEASURES; PROTECTION OF RAILROAD COMPANY OPERATIONS

It is understood and recognized that safety and continuity of the Railroad's operations and communications are of the utmost importance; and in order that the same may be adequately safeguarded, protected and assured, and in order that accidents may be prevented and avoided, it is agreed with respect to all of said work of the Town that the work will be performed in a safe manner and in conformity with the following standards:

- a) <u>Definitions</u>. All references in this Agreement to the Town shall also include the Contractor and their respective officers, agents and employees, and others acting under its or their authority; and all references in this Agreement to work of the Town shall include work both within and outside of the Railroad's property.
- b) Compliance With Laws. The Town shall comply with all applicable federal, state and local laws, regulations and enactments affecting the work. The Town shall use only such methods as are consistent with safety, both as concerns the Town, the Town's agents and employees, the officers, agents, employees and property of the Railroad and the public in general. The Town (without limiting the generality of the foregoing) shall comply with all applicable state and federal occupational safety and health acts and regulations. All Federal Railroad Administration regulations shall be followed when work is performed on the Railroad's premises. If any failure by the Town to comply with any such laws, regulations, and enactments, shall result in any fine, penalty, cost or charge being assessed, imposed or charged against the Railroad, the Town shall reimburse and indemnify the Railroad for any such fine, penalty, cost, or charge, including without limitation attorney's fees, court costs and expenses. The Town further agrees in the event of any such action, upon notice thereof being provided by the Railroad, to defend such action free of cost, charge, or expense to the Railroad.
- c) No Interference or Delays. The Town shall not do, suffer or permit anything which will or may obstruct, endanger, interfere with, hinder or delay maintenance or operation of the Railroad's tracks or facilities, or any communication or signal lines, installations

or any appurtenances thereof, or the operations of others lawfully occupying or using the Railroad's property or facilities.

- d) <u>Supervision</u>. The Town, at its own expense, shall adequately police and supervise all work to be performed by the Town, and shall not inflict injury to persons or damage to property for the safety of whom or of which the Railroad may be responsible, or to property of the Railroad. The responsibility of the Town for safe conduct and adequate policing and supervision of the Project shall not be lessened or otherwise affected by the Railroad's approval of plans and specifications, or by the Railroad's collaboration in performance of any work, or by the presence at the work site of the Railroad's representatives, or by compliance by the Town with any requests or recommendations made by such representatives. If a representative of the Railroad is assigned to the Project, the Town will give due consideration to suggestions and recommendations made by such representative for the safety and protection of the Railroad's property and operations.
- e) <u>Suspension of Work</u>. If at any time the Town's engineers or the Vice President-Engineering Services of the Railroad or their respective representatives shall be of the opinion that any work of the Town is being or is about to be done or prosecuted without due regard and precaution for safety and security, the Town shall immediately suspend the work until suitable, adequate and proper protective measures are adopted and provided.
- f) Removal of Debris. The Town shall not cause, suffer or permit material or debris to be deposited or cast upon, or to slide or fall upon any property or facilities of the Railroad; and any such material and debris shall be promptly removed from the Railroad's property by the Town at the Town's own expense or by the Railroad at the expense of the Town. The Town shall not cause, suffer or permit any snow to be plowed or cast upon the Railroad's property during snow removal from the Crossing Area.
- g) Explosives. The Town shall not discharge any explosives on or in the vicinity of the Railroad's property without the prior consent of the Railroad's Vice President-Engineering Services, which shall not be given if, in the sole discretion of the Railroad's Vice President-Engineering Services, such discharge would be dangerous or would interfere with the Railroad's property or facilities. For the purposes hereof, the "vicinity of the Railroad's property" shall be deemed to be any place on the Railroad's property or in such close proximity to the Railroad's property that the discharge of explosives could cause injury to the Railroad's employees or other persons, or cause damage to or interference with the facilities or operations on the Railroad's property. The Railroad reserves the right to impose such conditions, restrictions or limitations on the transportation, handling, storage, security and use of explosives as the Railroad, in the Railroad's sole discretion, may deem to be necessary, desirable or appropriate.
- h) Excavation. The Town shall not excavate from existing slopes nor construct new slopes which are excessive and may create hazards of slides or falling rock, or impair or endanger the clearance between existing or new slopes and the tracks of the Railroad. The Town shall not do or cause to be done any work which will or may disturb the stability of any area or adversely affect the Railroad's tracks or facilities. The Town, at its own expense, shall install and maintain adequate shoring and cribbing for all excavation and/or trenching performed by the Town in connection with construction, maintenance or other work. The shoring and cribbing shall be constructed and maintained with materials and in a manner approved by the Railroad's Assistant Vice President Engineering Design to withstand all stresses likely to be encountered, including any stresses resulting from vibrations caused by the Railroad's operations in the vicinity.
- i) <u>Drainage</u>. The Town, at the Town's own expense, shall provide and maintain suitable facilities for draining the Structure and its appurtenances, and shall not suffer or permit drainage water therefrom to flow or collect upon property of the Railroad. The Town, at the Town's own expense, shall provide adequate passageway for the waters of any streams, bodies of water and drainage facilities (either natural or artificial, and including water from the Railroad's culvert and drainage facilities), so that said waters may not, because of any facilities or work of the Town, be impeded, obstructed, diverted or caused to back up, overflow or damage the property of the Railroad or any part thereof, or property of others. The Town shall not obstruct or interfere with existing ditches or drainage facilities.
- j) <u>Notice</u>. Before commencing any work, the Town shall provide at least ten (10) days prior notice (excluding weekends and holidays) to the Railroad's Manager-Track Maintenance.
- k) <u>Fiber Optic Cables</u>. Fiber optic cable systems may be buried on the Railroad's property. Protection of the fiber optic cable systems is of extreme importance since any break could disrupt service to users resulting in business interruption and loss of revenue and profits. Town shall telephone the Railroad during normal business hours (7:00 a.m. to 9:00 p.m. Central Time, Monday through Friday, except holidays) at 1-800-336-9193 (also a 24-hour, 7-day number for emergency calls) to determine if fiber optic cable is buried anywhere on the Railroad's premises to be used by the Town. If it is, Town will telephone the telecommunications company(ies) involved, arrange for a cable locator, and make arrangements for relocation or other protection of the fiber optic cable prior to beginning any work on the Railroad's premises.

SECTION 9. INTERIM WARNING DEVICES

If at anytime it is determined by a competent authority, by the Town, or by agreement between the parties, that new or improved train activated warning devices should be installed at the Crossing Area, the Town shall install adequate temporary warning devices or signs and impose appropriate vehicular control measures to protect the motoring public until the new or improved devices have been installed.

SE TION 10. OTHER RAILROADS

All protective and indemnifying provisions of this Agreement shall inure to the benefit of the Railroad and any other railroad company lawfully using the Railroad's property or facilities.

SECTION 11. REMEDIES FOR BREACH OR NONUSE

- a) If the Town shall fail, refuse or neglect to perform and abide by the terms of this Agreement, the Railroad, in addition to any other rights and remedies, may perform any work which in the judgment of the Railroad is necessary to place the highway and appurtenances in such condition as will not menace, endanger or interfere with the Railroad's facilities or operations or jeopardize the Railroad's employees; and the Town will reimburse the Railroad for the expenses thereof.
- b) Nonuse by the Town of the Crossing Area for public highway purposes continuing at any time for a period of eighteen (18) months shall, at the option of the Railroad, work a termination of this Agreement and of all rights of the Town hereunder.
- c) The Town will surrender peaceable possession of the Crossing Area and Roadway upon termination of this Agreement. Termination of this Agreement shall not affect any rights, obligations or liabilities of the parties, accrued or otherwise, which may have arisen prior to termination.

SECTION 12. MODIFICATION - ENTIRE AGREEMENT

No waiver, modification or amendment of this Agreement shall be of any force or effect unless made in writing, signed by the Town and the Railroad and specifying with particularity the nature and extent of such waiver, modification or amendment. Any waiver by the Railroad of any default by the Town shall not affect or impair any right arising from any subsequent default. This Agreement and Exhibits attached hereto and made a part hereof constitute the entire understanding between the Town and the Railroad and cancel and supersede any prior negotiations, understandings or agreements, whether written or oral, with respect to the work or any part thereof.

SECTION 13. ASSIGNMENT; SUCCESSORS AND ASSIGNS

This Agreement shall not be assigned without the written consent of the Railroad. Subject hereto, this Agreement shall be binding upon and inure to the benefit of the parties hereto and their successors and assigns.

EXHIBIT B-1

To Supplemental Agreement

Cover Sheet for the Insurance Requirements

EXHIBIT B-1

TO SUPPLEMENTAL AGREEMENT

CONTRACT INSURANCE REQUIREMENTS

Contractor shall, at its sole cost and expense, procure and maintain during the life of this Agreement (except as otherwise provided in this Agreement) the following insurance coverage:

A. <u>Commercial General Liability Insurance</u>. Commercial general liability (CGL) with a limit of not less than \$5,000,000 each occurrence and an aggregate limit of not less than \$10,000,000. CGL insurance must be written on ISO occurrence form CG 00 01 12 04 (or a substitute form providing equivalent coverage).

The policy must also contain the following endorsement, which must be stated on the certificate of insurance:

- Contractual Liability Railroads ISO form CG 24 17 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Railroad Company Property" as the Designated Job Site.
- B. <u>Business Automobile Coverage Insurance</u>. Business auto coverage written on ISO form CA 00 01 (or a substitute form providing equivalent liability coverage) with a combined single limit of not less \$5,000,000 for each accident.

The policy must contain the following endorsements, which must be stated on the certificate of insurance:

- Coverage For Certain Operations In Connection With Railroads ISO form CA 20 70 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Property" as the Designated Job Site.
- Motor Carrier Act Endorsement Hazardous materials clean up (MCS-90) if required by law.
- C. Workers Compensation And Employers Liability Insurance. Coverage must include but not be limited to:
 - Contractor's statutory liability under the workers' compensation laws of the state(s) affected by this Agreement.
 - Employers' Liability (Part B) with limits of at least \$500,000 each accident, \$500,000 disease policy limit \$500,000 each employee.

If Contractor is self-insured, evidence of state approval and excess workers compensation coverage must be provided. Coverage must include liability arising out of the U. S. Longshoremen's and Harbor Workers' Act, the Jones Act, and the Outer Continental Shelf Land Act, if applicable.

- D. <u>Railroad Protective Liability Insurance</u>. Contractor must maintain Railroad Protective Liability insurance written on ISO occurrence form CG 00 35 12 04 (or a substitute form providing equivalent coverage) on behalf of Railroad as named insured, with a limit of not less than \$2,000,000 per occurrence and an aggregate of \$6,000,000. A binder stating the policy is in place must be submitted to Railroad before the work may be commenced and until the original policy is forwarded to Railroad.
- E. <u>Umbrella Or Excess Insurance</u>. If Contractor utilizes umbrella or excess policies, these policies must "follow form" and afford no less coverage than the primary policy.

Other Requirements

- F. All policy(ies) required above (except worker's compensation and employers liability) must include Railroad as "Additional Insured" using ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage). The coverage provided to Railroad as additional insured shall, to the extent provided under ISO Additional Insured Endorsement CG 20 26, and CA 20 48 provide coverage for Railroad's negligence whether sole or partial, active or passive, and shall not be limited by Contractor's liability under the indemnity provisions of this Agreement.
- G. Punitive damages exclusion, if any, must be deleted (and the deletion indicated on the certificate of insurance), unless:
 - insurance coverage may not lawfully be obtained for any punitive damages that may arise under this agreement, or
 - all punitive damages are prohibited by all states in which this agreement will be performed.
- H. Contractor waives all rights against Railroad and its agents, officers, directors and employees for recovery of damages to the extent these damages are covered by the workers compensation and employers liability or commercial umbrella or excess liability insurance obtained by Contractor required by this agreement.
- I. Prior to commencing the work, Contractor shall furnish Railroad with a certificate(s) of insurance, executed by a duly authorized representative of each insurer, showing compliance with the insurance requirements in this Agreement.

- J. All insurance policies must be written by a reputable insurance company acceptable to Railroad or with a current Best's Insurance Guide Rating of A- and Class VII or better, and authorized to do business in the state(s) in which the work is to be performed.
- K. The fact that insurance is obtained by Contractor or by Railroad on behalf of Contractor will not be deemed to release or diminish the liability of Contractor, including, without limitation, liability under the indemnity provisions of this Agreement. Damages recoverable by Railroad from Contractor or any third party will not be limited by the amount of the required insurance coverage.

EXHIBIT C

To Supplemental Agreement

Cover Sheet for the Railroad's Track & Surface Material Estimate

DATE: 2009-01-05

ESTIMATE OF MATERIAL AND FORCE ACCOUNT WORK BY THE

UNION PACIFIC RAILROAD

THIS ESTIMATE GOOD FOR 6 MONTHS EXPIRATION DATE IS :2009-07-06

DESCRIPTION OF WORK:

RECOLLECT ROAD CROSSING - PHOENIX SUB - MP 932.30 - WILLIAMS FIELD RD. 100% RECOLLECT PROM TOWN OF GILBERT, AZ. USING FEDERAL ADDITIVES WITH INDIRECT AND OVERHEAD CONSTRUCTION COST, 2051.

1 XING LOCATION = 160 TF OF CONCRETE CROSSING.

3 CARS OF BALLAST,

PTD: 60171 SERVICE UNIT: 16				•	BDIV; 9	32.30, Pf	HOENIX	
DESCRIPTION	QTY	UNIT	LABOR	MATERTAL	RECOLL	UPRR	LATOT	
ENGINEERING WORK								
ENGINEERING			10000		10000		10000	
LABOR ADDITIVE 205%			20500		20500		20500	
TOTAL ENGINEERING			30500	*****	30500		30500	
SIGNAL WORK								
LABOR ADDITIVE 205%			2084		2084		2084	
SALES TAX				2	2		2	
SIGNAL			1017	69	1086		1086	
TOTAL SIGNAL		•	3101	71	3172	****	3172	
TRACK & SURFACE WORK								
BALAST	3.00	СР	2280	2282	4562		4562	
BILL PREP				920	920		920	
ENVIRONMENTAL PERMITS				1	1		1	
EIETD MBTD			419		419		419	
HOMELINE FREIGHT				900	900		900	
LABOR ADDITIVE 205%			100953		100953		100953	
MATL STORE EXPENSE				533	533		533	
OTM			3280	3174	6454		6454	
RAIL	400.00	LF	4439	8644	13083		13083	
RDXING	160.00	TF	20354	32685	53039		53039	
SALES TAX				2262	2262		2262	
TRK-SURF, LIN			8556		8556		8556	
WELD			13575	254	1.3829		13829	
XTIE	110.00	EA	27808	9588	37396		37396	
10% CONTINGENCY				28000	28000		28000	
TOTAL TRACK & SURPACE				89243	270907		270907	÷
		-						
LABOR/MATERIAL EXPENS	E		215265	89314 -				
RECOLLECTIBLE/UPRR EX	PENSE				304579	0		
ESTIMATED PROJECT COS	r						304579	
EXISTING REUSEABLE MA	TERIAL (CREDI	T		0			
SALVAGE NONUSEABLE MA	TERIAL (CREDI	T		0			
				-				-

RECOLLECTIBLE LESS CREDITS

THE ABOVE FIGURES ARE ESTIMATES ONLY AND SUBJECT TO FLUCTUATION. IN THE EVENT OF AN INCREASE OR DECREASE IN THE COST OR QUANTITY OF MATERIAL OR LABOR REQUIRED, UPRR WILL BILL FOR ACTUAL CONSTRUCTION COSTS AT THE CURRENT EFFECTIVE RATE.

EXHIBIT C-1

To Supplemental Agreement

Cover Sheet for the Railroad's Signal Material Estimate

DATE: 2009-01-07

ESTIMATE OF MATERIAL AND FORCE ACCOUNT WORK BY THE

UNION PACIFIC RAILROAD

THIS ESTIMATE GOOD FOR 6 MONTHS EXPIRATION DATE IS :2009-07-08

DESCRIPTION OF WORK:

CONSTRUCITON COST - 167.76%

INSTALL AUTOMATIC FLASHING LIGHT CROSSING SIGNALS WITH GATES & CANTILEVERS AT GILBERT, AZ. WILLIAMS FIELD ROAD M.P.932.30 ON THE PHOENIX SUB DOT#741 831F WORK TO BE PERFORMED BY RAILROAD WITH EXPENSE AS BELOW: SIGNAL - TOWN OF GILBERT - 100% ESTIMATED USING FEDERAL ADDITIVES WITH OVERHEAD & INDIRECT

PID: 60170 SERVICE UNIT: 16					BDIV: 93	2.30, PH	OENIX
DESCRIPTION	QTY	UNIT	LABOR	MATERIAL	RECOLL	UPRR	TOTAL
ENGINEERING WORK							
BILL PREP			900		900		900
CANTILEVER REM/DISP				5000	5000		5000
CONTRACT				9148	9148		9148
ENGINEERING			6210		6210		6210
ENVIRONMENTAL				1	1		1
INSTALL METER				12000	12000		12000
LABOR ADDITIVE 167.76%		2	63689		263689		263689
NON-STOCK CANTILEVERS				26676	26676		26676
PERMITTING				86250	86250		86250
PRELIMINARY ENGINEERING				20000	20000		20000
ROCK/GRAVEL/FILL				2200	2200		2200
SIG-HWY XNG		15	51021		151021		151021
TRANSP/IB/OB/RCLW CONTR				14140	14140		14140
					 .		
TOTAL ENGINEERING		47	21820	175415	597235		597235
SIGNAL WORK							
LABOR ADDITIVE 167.76%			1706		1706		1706
MATL STORE EXPENSE				4	4		4
SALES TAX				3659	3659		3659
SIGNAL			1017	91483	92500		92500
							~ ~
TOTAL SIGNAL			2723	95146	97869		97869
LABOR/MATERIAL EXPENSE		4.2	4543	270561 •			
RECOLLECTIBLE/UFRR EXP	ENSE				695104	0	
ESTIMATED PROJECT COST							695104

THE ABOVE FIGURES ARE ESTIMATES ONLY AND SUBJECT TO FLUCTUATION. IN THE EVENT OF AN INCREASE OR DECREASE IN THE COST OR QUANTITY OF MATERIAL OR LABOR REQUIRED, UPRR WILL BILL FOR ACTUAL CONSTRUCTION COSTS AT THE CURRENT EFFECTIVE RATE.

EXHIBIT D

To To Supplemental Agreement

Cover Sheet for the Contractor's Right of Entry Agreement

February 2, 2009

UPRR Folder No.: 2538-71

To the Contractor:

Before Union Pacific Railroad Company can permit you to perform work on its property for the reconstruction, widening and improvement of the existing Williams Field Road at-grade public road crossing, it will be necessary for you to complete and execute two originals of the enclosed <u>Contractor's Right of Entry Agreement</u>. Please:

- 1. Fill in the <u>complete</u> legal name of the contractor in the space provided on Page 1 of the Contractor's Right of Entry Agreement. If a corporation, give the state of incorporation. If a partnership, give the names of all partners.
- 2. Fill in the date construction will begin and be completed in Article 5, Paragraph A.
- 3. Fill in the name of the contractor in the space provided in the signature block at the end of the Contractor's Right of Entry Agreement. If the contractor is a corporation, the person signing on its behalf must be an elected corporate officer.
- 4. Execute and return all copies of the Contractor's Right of Entry Agreement together with your Certificate of Insurance as required in Exhibit B, in the attached, self-addressed envelope.
- 5. Include a check made payable to the Union Pacific Railroad Company in the amount of \$500.00. If you require formal billing, you may consider this letter as a formal bill. In compliance with the Internal Revenue Services' new policy regarding their Form 1099, I certify that 94-6001323 is the Railroad Company's correct Federal Taxpayer Identification Number and that Union Pacific Railroad Company is doing business as a corporation.

Under Exhibit B of the enclosed Contractor's Right of Entry Agreement, you are required to procure Railroad Protective Liability Insurance (RPLI) for the duration of this project. As a service to you, Union Pacific is making this coverage available to you. If you decide that acquiring this coverage from the Railroad is of benefit to you, please contact Mr. Mike McGrade of Marsh USA @ 800-729-7001, e-mail: william.j.smith@marsh.com.

This agreement will not be accepted by the Railroad Company until you have returned <u>all</u> of the following to the undersigned at Union Pacific Railroad Company:

- 1. Executed, unaltered duplicate original counterparts of the Contractor's Right of Entry Agreement;
- 2. Your check in the amount of \$500.00 to pay the required balance due of the required Contractor's Right of Entry fee. (The Folder Number and the name "Paul G. Farrell" should be written on the check to insure proper credit). If you require formal billing, you may consider this letter as a formal bill;
- 3. Copies of all of your <u>up-to-date</u> General Liability, Auto Liability & Workman's Compensation Insurance Certificates *(yours and all contractors')*, naming Union Pacific Railroad Company as additional insured:

4. Copy of your <u>up-to-date</u> Railroad Protective Liability Insurance Certificate *(yours and all contractors')*, naming Union Pacific Railroad Company as additional insured.

RETURN ALL OF THESE REQUIRED ITEMS TOGETHER IN ONE ENVELOPE. DO NOT MAIL ANY ITEM SEPARATELY.

If you have any questions concerning this agreement, please contact me as noted below. Have a safe day!

Paul G. Farrell

Senior Manager Contracts Phone: (402) 544-8620 e-mail: pgfarrell@up.com

UPRR Folder No.: 2538-71

UPRR Audit No.: **S180909**

CONTRACTOR'S RIGHT OF ENTRY AGREEMENT

	EEMENT is made and entered into as of the day of, ween UNION PACIFIC RAILROAD COMPANY, a Delaware corporation
	(NAME OF CONTRACTOR)
a	corporation ("Contractor").
(State of Corpor	alion)
RECITALS:	
reconstruction and v "work"), with all or a the Railroad's Mile Maricopa County, A Location Print mark	een hired by the <i>Town of Gilbert</i> to perform work relating to the improvement, videning of the existing Williams Field Road at-grade public road crossing (the a portion of such work to be performed on property of Railroad in the vicinity of Post 932.30 on the Railroad's Phoenix Subdivision near Higley (Gilbert), Arizona, as such location is in the general location shown on the <u>Railroad</u> ed Exhibit A , and as specified on the <u>Detailed Print</u> marked Exhibit A-1 , each hereby made a part hereof, which work is the subject of a contract dated
	between the Railroad and the Town of Gilbert.
(Date of Contra	et)
	willing to permit the Contractor to perform the work described above at the bove subject to the terms and conditions contained in this Agreement
AGREEMENT:	
NOW. THERE	FORE, it is mutually agreed by and between Railroad and Contractor, as

ARTICLE 1 - DEFINITION OF CONTRACTOR.

For purposes of this Agreement, all references in this agreement to Contractor shall include Contractor's contractors, subcontractors, officers, agents and employees, and others acting under its or their authority.

ARTICLE 2 - RIGHT GRANTED; PURPOSE.

Railroad hereby grants to Contractor the right, during the term hereinafter stated and upon and subject to each and all of the terms, provisions and conditions herein contained, to enter upon and have ingress to and egress from the property described in the Recitals for the purpose of performing

follows:

the work described in the Recitals above. The right herein granted to Contractor is limited to those portions of Railroad's property specifically described herein, or as designated by the Railroad Representative named in Article 4.

ARTICLE 3 - TERMS AND CONDITIONS CONTAINED IN EXHIBITS B, C & D.

The terms and conditions contained in **Exhibit B**, **Exhibit C** and **Exhibit D**, attached hereto, are hereby made a part of this Agreement.

ARTICLE 4 - <u>ALL EXPENSES TO BE BORNE BY CONTRACTOR; RAILROAD</u> REPRESENTATIVE.

- A. Contractor shall bear any and all costs and expenses associated with any work performed by Contractor, or any costs or expenses incurred by Railroad relating to this Agreement.
- B. Contractor shall coordinate all of its work with the following Railroad representative or his or her duly authorized representative (the "Railroad Representative"):

Mike Battista
Manager Track Maintenance
Union Pacific Railroad Company
1255 South Campbell Avenue
Tucson, AZ 85713
Phone: 602-322-2506
Fax: 602-322-2515

John Clark
Manager Signal Maintenance
Union Pacific Railroad Company
301 Gila Street
Yuma, AZ 85364
Phone: 925-343-4563
Fax: 928-343-4558

C. Contractor, at its own expense, shall adequately police and supervise all work to be performed by Contractor and shall ensure that such work is performed in a safe manner as set forth in Section 7 of **Exhibit B**. The responsibility of Contractor for safe conduct and adequate policing and supervision of Contractor's work shall not be lessened or otherwise affected by Railroad's approval of plans and specifications involving the work, or by Railroad's collaboration in performance of any work, or by the presence at the work site of a Railroad Representative, or by compliance by Contractor with any requests or recommendations made by Railroad Representative.

ARTICLE 5 - TERM; TERMINATION.

Α.	A. The grant of right herein made to Contractor shall of	commence on the date of this Agreement, and
	continue until, ur	lless sooner terminated as herein provided, or
	(Expiration Date)	
	at such time as Contractor has completed its work	on Railroad's property, whichever is earlier.
	Contractor agrees to notify the Railroad Representa	tive in writing when it has completed its work
	on Railroad's property.	
B.	3. This Agreement may be terminated by either party	on ten (10) days written notice to the other

party.

ARTICLE 6 - CERTIFICATE OF INSURANCE.

- A. Before commencing any work, Contractor will provide Railroad with the (i) insurance binders, policies, certificates and endorsements set forth in **Exhibit C** of this Agreement, and (ii) the insurance endorsements obtained by each subcontractor as required under Section 12 of **Exhibit B** of this Agreement.
- B. All insurance correspondence, binders, policies, certificates and endorsements shall be sent to:

Union Pacific Railroad Company Real Estate Department 1400 Douglas Street, MS 1690 Omaha, NE 68179-1690 UPRR Folder No.: 2538-71

ARTICLE 7 - DISMISSAL OF CONTRACTOR'S EMPLOYEE.

At the request of Railroad, Contractor shall remove from Railroad's property any employee of Contractor who fails to conform to the instructions of the Railroad Representative in connection with the work on Railroad's property, and any right of Contractor shall be suspended until such removal has occurred. Contractor shall indemnify Railroad against any claims arising from the removal of any such employee from Railroad's property.

ARTICLE 8 - ADMINISTRATIVE FEE.

Upon the execution and delivery of this Agreement, Contractor shall pay to Railroad FIVE HUNDRED DOLLARS (\$500.00) as reimbursement for clerical, administrative and handling expenses in connection with the processing of this Agreement.

ARTICLE 9 - CROSSINGS.

No additional vehicular crossings (including temporary haul roads) or pedestrian crossings over Railroad's trackage shall be installed or used by Contractor without the prior written permission of Railroad.

ARTICLE 10 - EXPLOSIVES.

Explosives or other highly flammable substances shall not be stored on Railroad's property without the prior written approval of Railroad.

IN WITNESS WHEREOF, the parties hereto have duly executed this agreement in duplicate as of the date first herein written.

By: PAUL G. FARRELL Senior Manager Contracts

UNION PACIFIC RAILROAD COMPANY (Federal Tax ID #94-6001323)

(Name of Contractor)

Title:

By

RAILROAD WORK TO BE PERFORMED:

- 1. Re-lay 400-feet of track; Install 160-feet of concrete road crossing panels; Install 110 cross ties; Install 3 carloads of ballast; and other track & surface facilities and materials.
- 2. Install automatic flashing light crossing signals with gates and cantilevers; and other signal facilities and materials.
- 3. Engineering Design Review & Flagging.

EXHIBIT "A"

UNION PACIFIC RAILROAD COMPANY

PHOENIX SUBDIVISION MILE POST 932.30 GPS: N 33° 18.4178', W 111° 42.9460' GILBERT, MARICOPA CO., AZ.

To accompany Contractor's Right of Entry Agreement with

(Name of Contractor)

for an existing at-grade public road crossing reconstruction, widening and improvement project.

Folder No. 2538-71

Date: February 2, 2009

WARNING

IN ALL OCCASIONS, U.P. COMMUNICATIONS DEPARTMENT MUST BE CONTACTED IN ADVANCE OF ANY WORK TO DETERMINE EXISTENCE AND LOCATION OF FIBER OPTIC CABLE PHONE: 1-(800) 336-9193

EXHIBIT B

TO CONTRACTOR'S RIGHT OF ENTRY AGREEMENT

TERMS AND CONDITIONS

Section 1. NOTICE OF COMMENCEMENT OF WORK - FLAGGING.

- A. Contractor agrees to notify the Railroad Representative at least ten (10) working days in advance of Contractor commencing its work and at least ten (10) working days in advance of proposed performance of any work by Contractor in which any person or equipment will be within twenty-five (25) feet of any track, or will be near enough to any track that any equipment extension (such as, but not limited to, a crane boom) will reach to within twenty-five (25) feet of any track. No work of any kind shall be performed, and no person, equipment, machinery, tool(s), material(s), vehicle(s), or thing(s) shall be located, operated, placed, or stored within twenty-five (25) feet of any of Railroad's track(s) at any time, for any reason, unless and until a Railroad flagman is provided to watch for trains. Upon receipt of such ten (10)-day notice, the Railroad Representative will determine and inform Contractor whether a flagman need be present and whether Contractor needs to implement any special protective or safety measures. If flagging or other special protective or safety measures are performed by Railroad, Railroad will bill Contractor for such expenses incurred by Railroad, unless Railroad and a federal, state or local governmental entity have agreed that Railroad is to bill such expenses to the federal, state or local governmental entity. If Railroad will be sending the bills to Contractor, Contractor shall pay such bills within thirty (30) days of Contractor's receipt of billing. If Railroad performs any flagging, or other special protective or safety measures are performed by Railroad, Contractor agrees that Contractor is not relieved of any of its responsibilities or liabilities set forth in this Agreement.
- B. The rate of pay per hour for each flagman will be the prevailing hourly rate in effect for an eight-hour day for the class of flagmen used during regularly assigned hours and overtime in accordance with Labor Agreements and Schedules in effect at the time the work is performed. In addition to the cost of such labor, a composite charge for vacation, holiday, health and welfare, supplemental sickness, Railroad Retirement and unemployment compensation, supplemental pension, Employees Liability and Property Damage and Administration will be included, computed on actual payroll. The composite charge will be the prevailing composite charge in effect at the time the work is performed. One and one-half times the current hourly rate is paid for overtime, Saturdays and Sundays, and two and one-half times current hourly rate for holidays. Wage rates are subject to change, at any time, by law or by agreement between Railroad and its employees, and may be retroactive as a result of negotiations or a ruling of an authorized governmental agency. Additional charges on labor are also subject to change. If the wage rate or additional charges are changed, Contractor (or the governmental entity, as applicable) shall pay on the basis of the new rates and charges.
- C. Reimbursement to Railroad will be required covering the full eight-hour day during which any flagman is furnished, unless the flagman can be assigned to other Railroad work during a portion of such day, in which event reimbursement will not be required for the portion of the day during which the flagman is engaged in other Railroad work. Reimbursement will also be required for any day not actually worked by the flagman following the flagman's assignment to work on the project for which Railroad is required to pay the flagman and which could not reasonably be avoided by Railroad by assignment of such flagman to other work, even though Contractor may not be working during such time. When it becomes necessary for Railroad to bulletin and assign an employee to a flagging position in compliance with union collective bargaining agreements, Contractor must provide Railroad a minimum of five (5) days notice prior to the cessation of the need for a flagman. If five (5) days notice of cessation is not given, Contractor will still be required to pay flagging charges for the five (5) day notice period required by union agreement to be given to the employee, even though flagging is not required for that period. An additional ten (10) days notice must then be given to Railroad if flagging services are needed again after such five day cessation notice has been given to Railroad.

Section 2. LIMITATION AND SUBORDINATION OF RIGHTS GRANTED

- A. The foregoing grant of right is subject and subordinate to the prior and continuing right and obligation of the Railroad to use and maintain its entire property including the right and power of Railroad to construct, maintain, repair, renew, use, operate, change, modify or relocate railroad tracks, roadways, signal, communication, fiber optics, or other wirelines, pipelines and other facilities upon, along or across any or all parts of its property, all or any of which may be freely done at any time or times by Railroad without liability to Contractor or to any other party for compensation or damages.
- B. The foregoing grant is also subject to all outstanding superior rights (including those in favor of licensees and lessees of Railroad's property, and others) and the right of Railroad to renew and extend the same, and is made without covenant of title or for quiet enjoyment.

Section 3. NO INTERFERENCE WITH OPERATIONS OF RAILROAD AND ITS TENANTS.

A. Contractor shall conduct its operations so as not to interfere with the continuous and uninterrupted use and operation of the railroad tracks and property of Railroad, including without limitation, the operations of Railroad's lessees, licensees or others, unless specifically authorized in advance by the Railroad Representative. Nothing shall be done or permitted to be done by Contractor at any time that would in any manner impair the safety of such operations. When not in use, Contractor's machinery

and materials shall be kept at least fifty (50) feet from the centerline of Railroad's nearest track, and there shall be no vehicular crossings of Railroads tracks except at existing open public crossings.

B. Operations of Railroad and work performed by Railroad personnel and delays in the work to be performed by Contractor caused by such railroad operations and work are expected by Contractor, and Contractor agrees that Railroad shall have no liability to Contractor, or any other person or entity for any such delays. The Contractor shall coordinate its activities with those of Railroad and third parties so as to avoid interference with railroad operations. The safe operation of Railroad train movements and other activities by Railroad takes precedence over any work to be performed by Contractor.

Section 4. LIENS.

Contractor shall pay in full all persons who perform labor or provide materials for the work to be performed by Contractor. Contractor shall not create, permit or suffer any mechanic's or materialmen's liens of any kind or nature to be created or enforced against any property of Railroad for any such work performed. Contractor shall indemnify and hold harmless Railroad from and against any and all liens, claims, demands, costs or expenses of whatsoever nature in any way connected with or growing out of such work done, labor performed, or materials furnished. If Contractor fails to promptly cause any lien to be released of record, Railroad may, at its election, discharge the lien or claim of lien at Contractor's expense.

Section 5. PROTECTION OF FIBER OPTIC CABLE SYSTEMS.

- A. Fiber optic cable systems may be buried on Railroad's property. Protection of the fiber optic cable systems is of extreme importance since any break could disrupt service to users resulting in business interruption and loss of revenue and profits. Contractor shall telephone Railroad during normal business hours (7:00 a.m. to 9:00 p.m. Central Time, Monday through Friday, except holidays) at 1-800-336-9193 (also a 24-hour, 7-day number for emergency calls) to determine if fiber optic cable is buried anywhere on Railroad's property to be used by Contractor. If it is, Contractor will telephone the telecommunications company(ies) involved, make arrangements for a cable locator and, if applicable, for relocation or other protection of the fiber optic cable. Contractor shall not commence any work until all such protection or relocation (if applicable) has been accomplished.
- B. In addition to other indemnity provisions in this Agreement, Contractor shall indemnify, defend and hold Railroad harmless from and against all costs, liability and expense whatsoever (including, without limitation, attorneys' fees, court costs and expenses) arising out of any act or omission of Contractor, its agents and/or employees, that causes or contributes to (1) any damage to or destruction of any telecommunications system on Railroad's property, and/or (2) any injury to or death of any person employed by or on behalf of any telecommunications company, and/or its contractor, agents and/or employees, on Railroad's property. Contractor shall not have or seek recourse against Railroad for any claim or cause of action for alleged loss of profits or revenue or loss of service or other consequential damage to a telecommunication company using Railroad's property or a customer or user of services of the fiber optic cable on Railroad's property.

Section 6. PERMITS - COMPLIANCE WITH LAWS.

In the prosecution of the work covered by this Agreement, Contractor shall secure any and all necessary permits and shall comply with all applicable federal, state and local laws, regulations and enactments affecting the work including, without limitation, all applicable Federal Railroad Administration regulations.

Section 7. SAFETY.

- A. Safety of personnel, property, rail operations and the public is of paramount importance in the prosecution of the work performed by Contractor. Contractor shall be responsible for initiating, maintaining and supervising all safety, operations and programs in connection with the work. Contractor shall at a minimum comply with Railroad's safety standards listed in Exhibit C, hereto attached, to ensure uniformity with the safety standards followed by Railroad's own forces. As a part of Contractor's safety responsibilities, Contractor shall notify Railroad if Contractor determines that any of Railroad's safety standards are contrary to good safety practices. Contractor shall furnish copies of Exhibit C to each of its employees before they enter the job site.
- B. Without limitation of the provisions of paragraph A above, Contractor shall keep the job site free from safety and health hazards and ensure that its employees are competent and adequately trained in all safety and health aspects of the job.
- C. Contractor shall have proper first aid supplies available on the job site so that prompt first aid services may be provided to any person injured on the job site. Contractor shall promptly notify Railroad of any U.S. Occupational Safety and Health Administration reportable injuries. Contractor shall have a nondelegable duty to control its employees while they are on the job site or any other property of Railroad, and to be certain they do not use, be under the influence of, or have in their possession any alcoholic beverage, drug or other substance that may inhibit the safe performance of any work.
- D. If and when requested by Railroad, Contractor shall deliver to Railroad a copy of Contractor's safety plan for conducting the work (the "Safety Plan"). Railroad shall have the right, but not the obligation, to require Contractor to correct any deficiencies in the Safety Plan. The terms of this Agreement shall control if there are any inconsistencies between this Agreement and the Safety Plan.

Se lion 8. INDEMNITY.

- A. To the extent not prohibited by applicable statute, Contractor shall indemnify, defend and hold harmless Railroad, its affiliates, and its and their officers, agents and employees ("Indemnified Parties") from and against any and all loss, damage, injury, liability, claim, demand, cost or expense (including, without limitation, attorney's, consultant's and expert's fees, and court costs), fine or penalty (collectively, "loss") incurred by any person (including, without limitation, any indemnified party, contractor, or any employee of contractor or of any indemnified party) arising out of or in any manner connected with (i) any work performed by Contractor, or (ii) any act or omission of Contractor, its officers, agents or employees, or (iii) any breach of this Agreement by Contractor.
- B. The right to indemnity under this Section 8 shall accrue upon occurrence of the event giving rise to the loss, and shall apply regardless of any negligence or strict liability of any indemnified party, except where the loss is caused by the sole active negligence of an indemnified party as established by the final judgment of a court of competent jurisdiction. The sole active negligence of any indemnified party shall not bar the recovery of any other indemnified party.
- C. Contractor expressly and specifically assumes potential liability under this Section 8 for claims or actions brought by Contractor's own employees. Contractor waives any immunity it may have under worker's compensation or industrial insurance acts to indemnify Railroad under this Section 8. Contractor acknowledges that this waiver was mutually negotiated by the parties hereto
- D. No court or jury findings in any employee's suit pursuant to any worker's compensation act or the federal employers' liability act against a party to this Agreement may be relied upon or used by Contractor in any attempt to assert liability against Railroad.
- E. The provisions of this Section 8 shall survive the completion of any work performed by Contractor or the termination or expiration of this Agreement. In no event shall this Section 8 or any other provision of this Agreement be deemed to limit any liability Contractor may have to any indemnified party by statute or under common law.

Section 9. RESTORATION OF PROPERTY.

In the event Railroad authorizes Contractor to take down any fence of Railroad or in any manner move or disturb any of the other property of Railroad in connection with the work to be performed by Contractor, then in that event Contractor shall, as soon as possible and at Contractor's sole expense, restore such fence and other property to the same condition as the same were in before such fence was taken down or such other property was moved or disturbed. Contractor shall remove all of Contractor's tools, equipment, rubbish and other materials from Railroad's property promptly upon completion of the work, restoring Railroad's property to the same state and condition as when Contractor entered thereon.

Section 10. WAIVER OF DEFAULT.

Waiver by Railroad of any breach or default of any condition, covenant or agreement herein contained to be kept, observed and performed by Contractor shall in no way impair the right of Railroad to avail itself of any remedy for any subsequent breach or default.

Section 11. MODIFICATION - ENTIRE AGREEMENT.

No modification of this Agreement shall be effective unless made in writing and signed by Contractor and Railroad. This Agreement and the exhibits attached hereto and made a part hereof constitute the entire understanding between Contractor and Railroad and cancel and supersede any prior negotiations, understandings or agreements, whether written or oral, with respect to the work to be performed by Contractor.

Section 12. ASSIGNMENT - SUBCONTRACTING.

Contractor shall not assign or subcontract this Agreement, or any interest therein, without the written consent of the Railroad. Contractor shall be responsible for the acts and omissions of all subcontractors. Before Contractor commences any work, the Contractor shall, except to the extent prohibited by law; (1) require each of its subcontractors to include the Contractor as "Additional Insured" in the subcontractor's Commercial General Liability policy and Business Automobile policies with respect to all liabilities arising out of the subcontractor's performance of work on behalf of the Contractor by endorsing these policies with ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage; (2) require each of its subcontractors to endorse their Commercial General Liability Policy with "Contractual Liability Railroads" ISO Form CG 24 17 10 01 (or a substitute form providing equivalent coverage) for the job site; and (3) require each of its subcontractors to endorse their Business Automobile Policy with "Coverage For Certain Operations In Connection With Railroads" ISO Form CA 20 70 10 01 (or a substitute form providing equivalent coverage) for the job site.

EXHIBIT C

TO CONTRACTOR'S RIGHT OF ENTRY AGREEMENT

INSURANCE PROVISIONS

Contractor shall, at its sole cost and expense, procure and maintain during the course of the Project and until all Project work on Railroad's property has been completed and the Contractor has removed all equipment and materials from Railroad's property and has cleaned and restored Railroad's property to Railroad's satisfaction, the following insurance coverage:

A. <u>Commercial General Liability Insurance</u>. Commercial general liability (CGL) with a limit of not less than \$5,000,000 each occurrence and an aggregate limit of not less than \$10,000,000. CGL insurance must be written on ISO occurrence form CG 00 01 12 04 (or a substitute form providing equivalent coverage).

The policy must also contain the following endorsement, which must be stated on the certificate of insurance:

- Contractual Liability Railroads ISO form CG 24 17 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Railroad Company Property" as the Designated Job Site, and
- Designated Construction Project(s) General Aggregate Limit ISO Form CG 25 03 03 97 (or a substitute form providing equivalent coverage) showing the project on the form schedule.
- B. <u>Business Automobile Coverage Insurance</u>. Business auto coverage written on ISO form CA 00 01 10 01 (or a substitute form providing equivalent liability coverage) with a combined single limit of not less \$5,000,000 for each accident and coverage must include liability arising out of any auto (including owned, hired and non-owned autos).

The policy must contain the following endorsements, which must be stated on the certificate of insurance:

- Coverage For Certain Operations In Connection With Railroads ISO form CA 20 70 10 01 (or a substitute form providing equivalent coverage) showing "Union Pacific Property" as the Designated Job Site.
- Motor Carrier Act Endorsement Hazardous materials clean up (MCS-90) if required by law.
- C. Workers' Compensation and Employers' Liability Insurance. Coverage must include but not be limited to:
 - Contractor's statutory liability under the workers' compensation laws of the state where the work is being performed.
 - Employers' Liability (Part B) with limits of at least \$500,000 each accident, \$500,000 disease policy limit \$500,000 each employee.

If Contractor is self-insured, evidence of state approval and excess workers compensation coverage must be provided. Coverage must include liability arising out of the U. S. Longshoremen's and Harbor Workers' Act, the Jones Act, and the Outer Continental Shelf Land Act, if applicable.

The policy must contain the following endorsement, which must be stated on the certificate of insurance:

- Alternate Employer endorsement ISO form WC 00 03 01 A (or a substitute form providing equivalent coverage) showing Railroad in the schedule as the alternate employer (or a substitute form providing equivalent coverage).
- D. Railroad Protective Liability Insurance. Contractor must maintain Railroad Protective Liability insurance written on ISO occurrence form CG 00 35 12 04 (or a substitute form providing equivalent coverage) on behalf of Railroad as named insured, with a limit of not less than \$2,000,000 per occurrence and an aggregate of \$6,000,000. A binder stating the policy is in place must be submitted to Railroad before the work may be commenced and until the original policy is forwarded to Railroad.
- E. <u>Umbrella or Excess Insurance</u>. If Contractor utilizes umbrella or excess policies, these policies must "follow form" and afford no less coverage than the primary policy.
- F. <u>Pollution Liability Insurance</u>. Pollution liability coverage must be written on ISO form Pollution Liability Coverage Form Designated Sites CG 00 39 12 04 (or a substitute form providing equivalent liability coverage), with limits of at least \$5,000,000 per occurrence and an aggregate limit of \$10,000,000.

If the scope of work as defined in this Agreement includes the disposal of any hazardous or non-hazardous materials from the job site, Contractor must furnish to Railroad evidence of pollution legal liability insurance maintained by the disposal site operator for losses arising from the insured facility accepting the materials, with coverage in minimum amounts of \$1,000,000 per loss, and an annual aggregate of \$2,000,000.

Other Requirements

- G. All policy(ies) required above (except worker's compensation and employers liability) must include Railroad as "Additional Insured" using ISO Additional Insured Endorsements CG 20 26, and CA 20 48 (or substitute forms providing equivalent coverage). The coverage provided to Railroad as additional insured shall, to the extent provided under ISO Additional Insured Endorsement CG 20 26, and CA 20 48 provide coverage for Railroad's negligence whether sole or partial, active or passive, and shall not be limited by Contractor's liability under the indemnity provisions of this Agreement.
- H. Punitive damages exclusion, if any, must be deleted (and the deletion indicated on the certificate of insurance), unless the law governing this Agreement prohibits all punitive damages that might arise under this Agreement.
- 1. Contractor waives all rights of recovery, and its insurers also waive all rights of subrogation of damages against Railroad and its agents, officers, directors and employees. This waiver must be stated on the certificate of insurance.
- J. Prior to commencing the work, Contractor shall furnish Railroad with a certificate(s) of insurance, executed by a duly authorized representative of each insurer, showing compliance with the insurance requirements in this Agreement.
- K. All insurance policies must be written by a reputable insurance company acceptable to Railroad or with a current Best's Insurance Guide Rating of A- and Class VII or better, and authorized to do business in the state where the work is being performed.
- L. The fact that insurance is obtained by Contractor or by Railroad on behalf of Contractor will not be deemed to release or diminish the liability of Contractor, including, without limitation, liability under the indemnity provisions of this Agreement. Damages recoverable by Railroad from Contractor or any third party will not be limited by the amount of the required insurance coverage.

EXHIBIT D

TO CONTRACTOR'S RIGHT OF ENTRY AGREEMENT

MINIMUM SAFETY REQUIREMENTS

The term "employees" as used herein refer to all employees of Contractor as well as all employees of any subcontractor or agent of Contractor.

I. Clothing

A. All employees of Contractor will be suitably dressed to perform their duties safely and in a manner that will not interfere with their vision, hearing, or free use of their hands or feet.

Specifically, Contractor's employees must wear:

- (i) Waist-length shirts with sleeves.
- (ii) Trousers that cover the entire leg. If flare-legged trousers are worn, the trouser bottoms must be tied to prevent catching.
- (iii) Footwear that covers their ankles and has a defined heel. Employees working on bridges are required to wear safety-toed footwear that conforms to the American National Standards Institute (ANSI) and FRA footwear requirements.
- B. Employees shall not wear boots (other than work boots), sandals, canvas-type shoes, or other shoes that have thin soles or heels that are higher than normal.
- C. Employees must not wear loose or ragged clothing, neckties, finger rings, or other loose jewelry while operating or working on machinery.

II. Personal Protective Equipment

Contractor shall require its employees to wear personal protective equipment as specified by Railroad rules, regulations, or recommended or requested by the Railroad Representative.

- (i) Hard hat that meets the American National Standard (ANSI) Z89.1 latest revision. Hard hats should be affixed with Contractor's company logo or name.
- (ii) Eye protection that meets American National Standard (ANSI) for occupational and educational eye and face protection, Z87.1 – latest revision. Additional eye protection must be provided to meet specific job situations such as welding, grinding, etc.
- (iii) Hearing protection, which affords enough attenuation to give protection from noise levels that will be occurring on the job site. Hearing protection, in the form of plugs or muffs, must be worn when employees are within:
 - 100 feet of a locomotive or roadway/work equipment
 - 15 feet of power operated tools
 - 150 feet of jet blowers or pile drivers
 - 150 feet of retarders in use (when within 10 feet, employees must wear dual ear protection plugs and muffs)
- (iv) Other types of personal protective equipment, such as respirators, fall protection equipment, and face shields, must be worn as recommended or requested by the Railroad Representative.

III. On Track Safety

Contractor is responsible for compliance with the Federal Railroad Administration's Roadway Worker Protection regulations – 49CFR214, Subpart C and Railroad's On-Track Safety rules. Under 49CFR214, Subpart C, railroad contractors are responsible for the training of their employees on such regulations. In addition to the instructions contained in Roadway Worker Protection regulations, all employees must:

- Maintain a distance of twenty-five (25) feet to any track unless the Railroad Representative is present to authorize movements.
- (ii) Wear an orange, reflectorized workwear approved by the Railroad Representative.
- (iii) Participate in a job briefing that will specify the type of On-Track Safety for the type of work being performed. Contractor must take special note of limits of track authority, which tracks may or may not be fouled, and clearing the track. Contractor will also receive special instructions relating to the work zone around machines and minimum distances between machines while working or traveling.

IV. Equipment

A. It is the responsibility of Contractor to ensure that all equipment is in a safe condition to operate. If, in the opinion of the Railroad Representative, any of Contractor's equipment is unsafe for use, Contractor shall remove such equipment from Railroad's

oroperty. In addition, Contractor must ensure that the operators of all equipment are properly trained and competent in the safe operation of the equipment. In addition, operators must be:

- Familiar and comply with Railroad's rules on lockout/tagout of equipment.
- Trained in and comply with the applicable operating rules if operating any hy-rail equipment on-track.
 - Trained in and comply with the applicable air brake rules if operating any equipment that moves rail cars or any other railbound equipment.
- B. All self-propelled equipment must be equipped with a first-aid kit, fire extinguisher, and audible back-up warning device.
- C. Unless otherwise authorized by the Railroad Representative, all equipment must be parked a minimum of twenty-five (25) feet from any track. Before leaving any equipment unattended, the operator must stop the engine and properly secure the equipment against movement.
- D. Cranes must be equipped with three orange cones that will be used to mark the working area of the crane and the minimum clearances to overhead powerlines.

V. General Safety Requirements

- A. Contractor shall ensure that all waste is properly disposed of in accordance with applicable federal and state regulations.
- B. Contractor shall ensure that all employees participate in and comply with a job briefing conducted by the Railroad Representative, if applicable. During this briefing, the Railroad Representative will specify safe work procedures, (including On-Track Safety) and the potential hazards of the job. If any employee has any questions or concerns about the work, the employee must voice them during the job briefing. Additional job briefings will be conducted during the work as conditions, work procedures, or personnel change.
- C. All track work performed by Contractor meets the minimum safety requirements established by the Federal Railroad Administration's Track Safety Standards 49CFR213.
- D. All employees comply with the following safety procedures when working around any railroad track:
 - (i) Always be on the alert for moving equipment. Employees must always expect movement on any track, at any time, in either direction.
 - (ii) Do not step or walk on the top of the rail, frog, switches, guard rails, or other track components.
 - (iii) In passing around the ends of standing cars, engines, roadway machines or work equipment, leave at least 20 feet between yourself and the end of the equipment. Do not go between pieces of equipment of the opening is less than one car length (50 feet).
 - (iv) Avoid walking or standing on a track unless so authorized by the employee in charge.
 - (v) Before stepping over or crossing tracks, look in both directions first.
 - (vi) Do not sit on, lie under, or cross between cars except as required in the performance of your duties and only when track and equipment have been protected against movement.
- E. All employees must comply with all federal and state regulations concerning workplace safety.

Attachment 4

Cooley Station Traffic Impact Study by TASK Engineering

Cooley Station Traffic Impact Study

Gilbert, Arizona

August 16, 2006 Revised November 16, 2006

3707 North 7th Street Suite 235
Phoenix, Arizona 85014
Phone: 602-277-4224 Fax: 602-277-4228
Email: task@taskeng.net www.taskeng.net

Cooley Station Traffic Impact Study

Gilbert, Arizona

Prepared for:

Jeff Cooley, Cooley Station Gilbert, Arizona

By:

TASK Engineering, Inc 3707 North 7th Street, Suite 235 Phoenix, AZ 85014

> Phone: (602) 277-4224 Fax: (602) 277-4228

August 16, 2006 REVISED November 16, 2006

TABLE OF CONTENTS

LIST OF TABLES	2
LIST OF FIGURES	2
INTRODUCTION	3
DESCRIPTION OF PROPOSED DEVELOPMENT	3
DESCRIPTION OF ROAD NETWORK	6
TRIP GENERATION	6
TRIP DISTRIBUTION	10
STUDY AREA TRAFFIC ASSIGNMENT	12
BACKGROUND TRAFFIC	13
TOTAL TRAFFIC	18
TRAFFIC ANALYSIS	18
DESIGN ISSUES	28
SIGNAL WARRANT ANALYSIS	31
RECOMMENDATIONS	33
APPENDIX A: CAPACITY SUMMARIES	
APPENDIX B: TRIP DISTRIBUTION	
APPENDIX C: ADJACENT TRIP GENERATION	
APPENDIX D: ADJACENT PRODUCTIONS AND ATTRACTIONS	
APPENDIX E: EXCERPTS FROM QUALITY/LEVEL OF SERVICE HANDBOOK	
APPENDIX F: TOWN OF GILBERT STANDARD CROSS SECTIONS	
APPENDIX G: TOWN OF GILBERT COMMENTS AND RESPONSE MEMO	
APPENDIX H: SIGNAL WARRANT PROCEDURES	

LIST OF TABLES

1	Trip Generation	8
2	Productions and Attractions	9
3	Trip Distribution	11
4	Level of Service Criteria for Signalized Intersections	28
5	Level of Service Criteria for Unsignalized Intersections	28
6	Traffic Signal Needs Using ADT Volume Warrant (Year 2015)	32
7	Traffic Signal Needs Using ADT Volume Warrant (Year 2025)	33
	LIST OF FIGURES	
1	Vicinity Map	4
2	Schematic Site Plan.	5
3	Key Map	14
4	Average Daily Study Area Traffic	15
5	AM (PM) Peak Hour Study Area Traffic	16
6	Average Daily Background Traffic (Year 2015)	19
7	Average Daily Background Traffic (Year 2025)	20
8	AM (PM) Peak Hour Background Traffic (Year 2025)	21
9	Average Daily Total Traffic (Year 2015)	23
10	Average Daily Total Traffic (Year 2025)	24
11	AM (PM) Peak Hour Total Traffic (Year 2025)	25
12	Lane Recommendations (Year 2015)	27
13	Level of Service and Recommendations (Year 2025)	29

INTRODUCTION

This traffic study analyzes the impacts of the proposed mixed residential/commercial development located south of Ray Road, west of Power Road, east of Wade Road, and north of Pecos Road. This particular area is a portion of a larger development, the Cooley Station Master Planned Community. It is located in Gilbert, Arizona as shown on Figure 1. A previous traffic study in this area addressed the entire master planned community at full buildout conditions. This study analyzes the southern portion of the previous Cooley Master Plan.

The purposes of this study are:

- 1. To determine the access and egress needs to serve the site,
- 2. To review driveway, access, and deceleration lane configurations on the adjacent roadway network, and
- 3. To prepare a traffic impact study for submittal to the Town of Gilbert.

Traffic conditions were analyzed for two scenarios: background traffic in Year 2015, plus full development of Cooley Station, and background traffic in the horizon Year 2025, plus full development of the site. Traffic is analyzed at accesses and on all adjacent roadways within one-half mile.

This revised report incorporates comments from the Town of Gilbert dated September 15, 2006. A copy of the comments and a response memorandum are included in Appendix G.

The conclusions of this report are listed in the final section, RECOMMENDATIONS. Appendix A contains summaries of individual capacity analyses. The following sections detail the methodology used to reach the conclusions.

DESCRIPTION OF PROPOSED DEVELOPMENT

The schematic site plan for the proposed development is shown on Figure 2. It is a mixed residential and commercial development with $\pm 8,099$ dwelling units, a ± 79.74 acre Village Center, a ± 40.03 acre Business Park, a ± 21 acre K-8 School, and ± 21.2 acre shopping center parcel. The residential lots are composed of single family, town homes and apartments. The commercial site is assumed to have general retail stores and is regarded as a shopping center.

There is an existing high school, Higley High School, located on the northeast corner of Pecos Road and Recker Road. There is also an existing shopping center located on the northwest corner of Williams Field Road and Power Road. Arizona State University Polytechnic Campus is also located near the site, east of Power Road. These adjacent sites create additional traffic on the arterial roadways and will interact with the site. Currently the site area and most of the surrounding area a combination of agricultural and residential land uses, with extensive development occurring in the area.

TASK FNGINFFRING Vicinity Map

Figure 1 Page 4 11/2006

Figure 2 Page 5 11/2002

DESCRIPTION OF ROAD NETWORK

The internal road network is shown on Figure 2.

Power Road serves as the main north-south through street, connecting the site area to the San Tan Freeway. Power Road is currently two lanes in each direction in the vicinity of the site. Power Road has signalized intersection control at Ray Road, Williams Field Road, and Pecos Road.

Recker Road is currently under construction south of Warner Road and between Williams Field Road and Pecos Road. Recker Road has signalized intersection control at Pecos Road, Ray Road and Warner Road, and is four-way STOP sign controlled at Williams Field Road. Although it is an arterial, Recker Road does not have an interchange with the San Tan Freeway, and it does not extend through to Germann Road on the south.

Williams Field Road is currently two lanes in each direction in the vicinity of the site, with a posted speed limit of 45 mph.

East of Recker Road, Ray Road is a five-lane road (two lanes westbound and three lanes eastbound). West of Recker Road, Ray Road is a six-lane road. The posted speed limit on Ray Road is 45 mph.

West of Recker Road, Pecos Road is a five-lane roadway (two lanes eastbound and three lanes westbound). East of Recker Road, Pecos Road is a six-lane roadway. The posted speed limit is 45 mph.

TRIP GENERATION

The first step in estimating traffic from the proposed development is to calculate the total estimated vehicle trips to and from the site on an average weekday after the site has been completely built out. This is called trip generation. Vehicle trips are estimated for a total average weekday and for AM and PM peak hours. Trip Generation, Seventh Edition, 2003, and the Trip Generation Handbook, 2nd Edition, June 2004, published by the Institute of Transportation Engineers (ITE), were the sources for the trip rates used in this study.

For a large area such as this, some trips will have both their origin and their destination end within the study area. These are referred to as "internal" trips. Other trips will have one end, either origin or destination, in the site and the other end outside the site. These are referred to as "external" trips. The arterial street approaches to the site that these external trips use are referred to as "external stations."

Each trip has two trip ends. The trip Production end represents the end of the trip where the decision to make a trip is made. Generally, this is the home end of a home-based trip. The Attraction end of the trip is generally the end where the trip maker engages in some activity, such as employment, shopping, education or recreation.

Cooley Station Traffic Impact Study	Table 1	Page 8	11/2006
('ooley'.			

							L			Trin Rates					Total		
TAZ	non Parcel #	TCID	Parcel Type	Units	Acres /	Amount	LUC. D	Daily Rate	AM Rate	PM Rate	% In AM	% In PM	Weekday	AM In	AM Out	PM fn	PM Out
-	_	223	Residential (5-8 DU/Acre)	DUs	-	633	210	├	0.75	10.1	25%	63%	850'9	611	356	403	237
2	2	226	Residential (5-8 DU/Acre)	DUs	78.84	630	210	9.57	0.75	10.1	75%	63%	6,029	118	354	401	235
3	9	230	Residential (8-14 DU/Acre)	DUs	16.02	224	230	5.86	0.44	0.52	17%	%19	1,313	1.1	82	78	38
4	4	233	Residential (8-14 DU/Acre)	DUs	13.44	188	230	5.86	0.44	0.52	17%	67%	1,102	14	69	65	32
~	2	238	Residential (14-25 DU/Acre)	DUs	29.78	744	220	6.72	15.0	0.62	70%	65%	2,000	9/	304	300	161
٠	¥9	,	Village Center (Residential)	DUs	10.01	171	220	6.72	0.51	0.62	70%	65%	1,149	1.1	70	69	37
9	6B	1	Viallge Center (General Office)	Ľ	2.90	94.8377	710	4.49	0.67	0.46	%88	17%	426	56	80	7	36
9	39	,	Village Center (Commercial)	TGSF	2.20	71.9459	820	76.21	1.79	7.00	%19	48%	5,483	- 26	50	242	292
	9	241	Sum Village Center Parcel 6	,	,	ı	~	~		,	,	ì	7,058	152	128	318	335
7	7.8	7	Village Center (Residential)	DUs	10.01	171	220	6.72	0.51	0.62	70%	65%	1,149	17	70	69	37
1	7.8		Viallge Center (General Office)	Ľ	2.90	94.8377	710	4.49	19.0	0.46	%88	17%	426	99	8	7	36
7	2/2	,	Village Center (Commercial)	L	2.20	71.9459	820	76.21	1.79	7.00	%19	48%	5,483	- 79	50	242	797
	7	245	Sum Village Center Parcel 7	L	╁─	,	,	,	,	,	ł	?	7,058	152	128	318	335
∞		248	Residential (14-25 DU/Acre)	DUs	23.94	865	220	6.72	0.51	0.62	70%	%59	4,019	61	244	241	130
0	6	250	Residential (14-25 DU/Acre)	L	25.97	649	220	6.72	0.51	0.62	%07	%59	4,361	99	265	292	141
2	10	251	Residential (8-14 DU/Acre)	DUs	26.21	366	230	5.86	0.44	0.52	11%	%19	2,145	27	134	128	63
2 =	-	254	Residential (5-8 DU/Acre)	L	99.36	783	210	9.57	0.75	101	72%	%89	7,493	147	440	498	293
2	12	256	K-8 School	Š	21.00	009	520	1.29	0.42	0.28	85%	45%	774	139	113	92	9.5
2 2		259	Residential (5-8 DU/Acre)	DUs	79.40	635	210	9.57	0.75	10'1	25%	63%	6,077	119	357	404	237
7	141	269	Commercial	TGSF	21.20	194	820	53.85	1.20	5.00	%19	48%	10,447	142	16	466	504
5	15	270	Residential (14-25 DU/Acre)	DUs	16.6	249	220	6.72	15.0	0.62	70%	%59	1,673	25	102	100	54
91	16A		Village Center (Residential)	DUs	29.87	905	220	6.72	0.51	0.62	70%	%59	3,400	52	506	204	0=
91	168		Vialize Center (General Office)	Ĺ	99'8	282.997	710	3.77	0.58	94.0	%88	%11	1,067	144	20	22	108
91	190		Village Center (Commercial)	L	┢	214.688	820	86.18	1.15	4.83	%19	48%	11,159	151	96	498	539
	91	280	Sum Village Center Parcel 16	1	,	,	ı	1	,	ł	ı	ı	15,627	347	322	724	757
17	17	282	Residential (14-25 DU/Acre)	DUs	6.67	249	220	6.72	0.51	0.62	70%	%59	1,673	25	102	100	54
8	184		Village Center (Residential)		29.87	507	220	6.72	0.51	0.62	70%	989	3,407	52	207	504	01
81	18B		Viallge Center (General Office)	TGSF	99.8	282.997	710	3.77	0.58	0.46	88%	17%	1,067	144	20	22	801
18	18C		Village Center (Commercial)	L	6.57	214.688	820	51.98	1.15	4.83	%19	48%	11,159	151	96	498	539
	18	283	Sum Village Center Parcel 18		,	2	₹	1	1	'	ı	ł	15,633	347	323	724	757
61	161	285	Residential (8-14 DU/Acre)	DUs	25.44	356	230	5.86	0.44	0.52	17%	%19	2,086	27	130	124	19
20	02	287	Residential (14-25 DU/Acre)	DUs	7.68	192	220	6.72	0.51	0.62	70%	%59	1,290	70	78	77	42
21	21	290	Residential (14-25 DU/Acre)	DUs	9.93	248	220	6.72	0.51	0.62	70%	%59	1,667	25	101	8	54
22	22	291	Business Park	TGSF	40.00	635	770	12.76	1.43	1.29	84%	23%	8,103	763	145	188	631
23	23	293	General Office	TGSF	6.20	89	710	4.73	0.70	0.46	88%	17%	322	42	9	2	26
			Sum of DUs		ľ	8,099							117,006	2,969	4,373	6,100	5,270

١	
۱	
١	ä
1	ati
١	ë

ooley Station	Į			r	A	Amount I II	Daily Rate	AM Rate	PM Rate	% In AM	% In PM	Weekday	AM In	AM Out	PM fn	PM Out
TAZ	Parcel #	TCID	Parcel Lype	Comits	-	017	╀	+-	107	25%	63%	850'9	611	356	403	237
	-	223	Residential (3-8 DU/Acre)	SOA :	4	+	ļ	27.0	10	250%	63%	6209	811	354	401	235
2	2	226	Residential (5-8 DU/Acre)	DUs	78.84	+	1	0.73	1.0	7021	200	1 313	-	2	282	38
3	3	230	Residential (8-14 DU/Acre)	DUS	16.02	+	1	0.44	0.52	170	7077	501.	-	3 8	9	1
4	4	233	Residential (8-14 DU/Acre)	DUs	13.44	+	\downarrow	0.44	0.52	0//1	0/70	2010	7,	304	S S	19
~	5	238	Residential (14-25 DU/Acre)	DUs	29.78	\dashv	-	15.0	0.62	20%	02.00	0,00	2 5	5 6	3	15
	6.4	1	Village Center (Residential)	DUs		4	-	0.51	79.0	20.7%	62%	1,143	1	2 0	3	36
,	e,B	,	Vialige Center (General Office)	TGSF	2.90 9	4	4	0.67	0.46	88%	%/	470	2 8	0 3	, ,	200
,	200	1	Village Center (Commercial)	TGSF	7 07.7	71.9459 820	76.21	1.79	7.00	%19	48%	5,483	5	2	747	707
۰		341	Sum Village Center Parcel 6	,	,	ı	2	1	,	ì	1	7,058	152	821	318	35
	٥	1,77	Village Center (Residential)	Dils	10.01	171 220	5.72	0.51	0.62	20%	65%	1,149	-	20	99	37
7	7A	2	Village Contor (General Office)	TGSF	+-	12	-	19.0	0.46	%88	17%	426	2,6	∞	-	36
7	718	,	Vialige Center (Constitution)	TGSE	+	┞	L	1.79	7.00	%19	48%	5,483	- 62	20	242	292
7	70	, ,	Village Cellier (Continue Cial)	1000	╁╴	╀	\vdash	,	,	1		7,058	152	128	318	335
	7	245	Sum Village Cellel Facel /	12	73 04	508 22	6.72	0.51	0.62	20%	65%	4,019	19	244	241	130
∞	8	248	Residential (14-23 DOI Acte)	512	75.07	220	-	0.51	0.62	70%	959	4,361	99	265	797	14.
6	6	250	Residential (14-23 DU/Acre)	Son	1076	+	+	0.44	0.52	17%	%19	2,145	27	134	128	63
10	10	251	Residential (8-14 DU/Acre)	son 2	17.07	+	1	0.75	ē	25%	63%	7,493	147	440	498	293
-	11	254	Residential (5-8 DU/Acre)	son .	05.50	+	+	0.42	0.78	%\$\$	45%	774	139	113	76	92
12	12	256	K-8 School	Students	71.00	+	1			26.00	7017	4.077	110	357	404	237
2	13	259	Residential (5-8 DU/Acre)	DUs	79.40	+	+	2/3	5 6	7017	/88/	10.407	147	ō	999	504
3	14	269	Commercial	TGSF	21.20	\dashv	4	1.20	2.00	01.V0	40.70	/44,01	1	: 6		2
<u>.</u>		270	Residential (14-25 DU/Acre)	pūs	26.6	249 220	0 6.72	0.51	0.62	70%	65%	1,673	7	75]	3	7
2	2	017	William Center (Besidential)	ž Įč	29.87	-	0 6.72	15'0	0.62	70%	%59	3,400	52	505	204	2
2	I6A		Village Collect (Testionalist)	TOSE	╁	-	L	0.58	0.46	%88	%4.1	1,067	144	20	7.7	108
91	16B		Vialige Center (General Otrice)	1001	╁	-	ļ	1.15	4.83	%19	48%	11,159	151	96	498	539
16	J9C		Village Center (Commercial)	1001	+	╀	\perp	,	,	,	1	15,627	347	322	724	757
	91	280	Sum Village Center Parcel 10	, ;	, 5	066	677	0.51	290	20%	%59	1,673	25	102	100	54
11	17	282	Residential (14-25 DU/Acre)	n i	, , ,	+	\downarrow	10.0	0.67	20%	65%	3,407	52	207	204	110
81	18A		Village Center (Residential)	2002	╅	1	+	85.0	0.46	88%	17%	1 067	144	20	22	801
18	18B		Vialige Center (General Othce)	Took	00.0	4	1	\$1.1	4.83	%19	48%	11,159	151	96	498	539
18	18C		Village Center (Commercial)	133	╅	┸	1	,	,	,	,	15,633	347	323	724	757
	18	283		,	,	+	70.3	77.0	0.50	17%	%19	2 086	27	130	124	19
61	61	285	Residential (8-14 DU/Acre)	DO	25.44	+	+	130	25.0	30%	%59	1 290	20	78	77	42
20	70	287		DOs	7.08	+	+		20.0	2007	7059	1 667	2,	5	90	54
21	21	290	Residential (14-25 DU/Acre)	DUs	9.93	248 220	4	0.51	70.0	648/	730%	6018	763	145	88	631
2	22	291	Business Park	TGSF	┥	4	-	1.43	1.2%	04.70	702.	27.5	3 5	2	-	3,5
1 2	23	293	General Office	TGSF	6.20	68 710	0 4.73	0.70	0.40	98.90	0/1	775	7,000	, 272	7 100	5 270
			Sum of DUs			8,099						11/1000	7,769	6/5/4	0,100	

("Y T

								L		Trip	Trip Productions	15			Trip	Trip Attractions	81	
Cooley Station	Parcel #	TC 10	Parcel Tyne	Units	Acres /	Amount L	L.U.C. % A	% Attractions Weekday	Weckday	AM In	AM Out	PM In	PM Out	Weckday	AM In	AM Out	M In	PM Out
-	1	223	Residential (5-8 DU/Acre)	DUs			210	2%	5,755	113	338	383	225	303	9	81	20	12
, ,	2	226	Residential (5-8 DU/Acre)	DCs	78.84	963	210	2%	5,728	112	337	381	224	301	9	81	20	12
	3	230	Residential (8-14 DU/Acre)	sna.	16.02	\vdash	230	5%	1,247	16	78	74	37	99	-	4	4	2
4	4	233	Residential (8-14 DU/Acre)	DUs	13.44	188	230	5%	1,047	13	65	62	31	55	-	3	3	2
>	,	238	Residential (14-25 DU/Acre)	DUs	29.78	744	220	%5	4,750	72	288	285	153	250	4	15	15	8
, ,	64	2	Village Center (Residential)	DUs	10.01	171	220	2%	1,092	17	99	65	35	57	-	3	3	2
	ay	2	Vialize Center (General Office)	TGSF	2.90	94.8377	710	%09	170	22	3	3	14	255	34	5	4	22
9	29	?	Village Center (Commercial)	TGSF	2.20	71.9459	820	%09	2,193	31	20	26	105	3,290	47	30	145	157
	9	241	Sum Village Center Parcel 6	1	1	1	1	ì	3,455	70	68	165	154	3,603	82	38	153	181
7	7A	1	Village Center (Residential)	DUs	10.01	171	220	2%	1,092	17	99	65	35	57	-	3	9	2
7	718	,	Viallge Center (General Office)	TGSF	2.90	94.8377	110	%09	170	22	3	3	14	255	34	2	4	22
7	70	1	Village Center (Commercial)	TCSF	2.20	71.9459	820	%09	2,193	31	70	62	105	3,290	47	30	145	157
	7	245	Sum Village Center Parcel 7	1	~	_		ı	3,455	70	68	165	154	3,603	82	38	153	181
œ	~	248	Residential (14-25 DU/Acre)	DUs	23.94	865	220	%5	3,818	58	232	229	123	201	3	12	12	9
		750	Residential (14-25 DU/Acre)	DUs	25.97	-	220	2%	4,143	63	252	248	134	218		13	<u></u>	7
, 5	10	251	Residential (8-14 DU/Acre)	DUs	26.21	\vdash	230	2%	2,038	26	127	121	09	107	-	7	9	3
=		254	Residential (5-8 DU/Acre)	DUs	99.36	783	210	2%	7,119	139	418	473	278	375	7	22	25	-2
12	12	256	K-8 School	Students	21.00	009	520	85%	116	21	17	=	14	658	118	96	64	79
-	13	259	Residential (5-8 DU/Acre)	DUs	79.40	635	210	2%	5,773	113	339	384	225	304	9	<u>∞</u>	20	12
2	14	269	Conmercial	TGSF	21.20	194	820	%05	5,223	71	45	233	252	5,223	71	45	233	252
15	- 15	270	Residential (14-25 DU/Acre)	DUS	9.97	-	220	%5	1,590	24	26	95	51	84	-	5	2	3
2 2	164		Village Center (Residential)	DUs	29.87	206	220	%5	3,230	46	961	194	104	170	3	2	2	2
2 2	168		Viallee Center (General Office)	TGSF	8.66	282.997	710	%09	427	58	8	6	43	640	87	12	2	65
2 9	160		Village Center (Connmercial)	TGSF	6.57	214.688	820	%09	4,464	09	39	199	216	969'9	06	58	299	324
	91	280	Sum Village Center Parcel 16	ı	2	ı	ì	1	8,121	167	243	402	363	7,506	180	08	322	394
17	17	282	Residential (14-25 DU/Acre)	DUs	6.67	249	220	2%	1,590	24	- 64	95	51	84	-	5	2	2
×	18A		Village Center (Residential)	DUs	29.87	207	220	2%	3,237	49	197	194	105	170	3	9	0	9
~	188		Viallge Center (General Office)	TGSF	99.8	282.997	710	20%	533	72	10	=	22	533	72	9	=	54
× 1	28.		Village Center (Commercial)	TCSF	6.57	214.688	820	20%	5,580	75	48	249	270	5,580	7.5	48	249	270
	81	283	Sum Village Center Parcel 18	1	1	ì	2	1	9,350	197	255	454	428	6,284	150	89	270	329
2	2	285	Residential (8-14 DU/Acre)	DUs	25.44	356	230	%5	1,982	25	124	118	28	104	-	7	9	
20	20	287	Residential (14-25 DU/Acre)	DOS	7.68	192	220	2%	1,226	61	74	74	9	65	-	4	4	2
212	21	290	Residential (14-25 DU/Acre)	DUs	9.93	248	220	%\$	1,583	24	96	95	51	83	-	2	2	3
22	22	291	Business Park	TGSF	40.00	635	770	20%	4,051	381	73	45	315	4,051	381	73	94	315
23	23	293	General Office	TGSF	6.20	89	710	20%	191	21	3	3	13	161	21	2	3	=
			Sum of DUs			8,099		3	83,319	1,840	3,775	4,644	3,435	33,688	1,128	598	1,456	1,835
					•													

Cooley Station Traffic Impact Study
Table 2
Page 9
11/2006

TCAD ID is the ID unique to the TransCAD modeling program used to identify the endpoint associated with each parcel.

Parcel Type describes the parcel use.

Units specifies the units of land use used for generating trips. "Thousands of Gross Square Feet" is abbreviated TGSF. Dwelling units is abbreviated DUs.

Amount is the number of units in the parcel (i.e. 544 Thousand Gross Square Feet or 134 Dwelling Units).

LUC is the ITE Land Use Code. It refers to the section of the ITE manual from which the trip rates were obtained.

Rates present the number of daily, AM peak hour and PM peak hour vehicle trips to and from the subject land use per unit.

Percent In is the percentage of AM and PM vehicle trips arriving inbound at the land use. The remaining percent of trips are leaving outbound. For instance, 25 percent of AM peak hour trips are arriving at a single family home, and the remaining 75 percent are leaving the home. For daily trips, it is assumed that 50 percent are inbound trips and 50 percent are outbound trips.

Trips are the calculated number of trips. They are calculated as the amount times the rate times the percent inbound or outbound.

Productions and Attractions for adjacent developments can be found in Appendix D. Detailed trip generation tables for the adjacent developments are shown in Appendix C. The total internal Productions for the study area are more than the total internal Attractions. The difference is Attractions to external stations. These are trips between the study area and other locations in the metropolitan region.

TRIP DISTRIBUTION

Trip distribution is the process of assigning a starting location for each inbound trip to the site and an ending location for each outbound trip. Daily, AM peak hour and PM peak hour trips are distributed separately.

External trips are split between a number of external stations, which represent arterial approaches to the study area. Total external trip Attractions are calculated as the difference between internal Productions and internal Attractions. Specifically;

Total Daily A(Ext) = Total Daily P(Int) – Total Daily A(Int)
Total AM-In A(Ext) = Total AM-Out P(Int) – Total AM-In A(Int)
Total AM-Out A(Ext) = Total AM-In P(Int) – Total AM-Out A(Int)
Total PM-In A(Ext) = Total PM-Out P(Int) – Total PM-In A(Int)
Total PM-Out A(Ext) = Total PM-In P(Int) – Total PM-Out A(Int)

Where,

Daily = ADT trip generation

A = Attractions
P = Productions
Int = Internal zone
Ext = External station

Site trips were distributed by direction proportionally to the sum of Year 2020 population and employment forecasts within ten miles of the center of the site. These projections were obtained from Year 2020 Population and Employment projections by the Maricopa Association of Government (MAG). These values are shown in Table 3. A worksheet of MAG data for the site is included in Appendix B.

Table 3
Trip Distribution Percentages

Cooley Station Traffic Impact Study Direction Trip Distribution Percentage Higley Road, North 20% 2% Recker Road, North Power Road, North 2% 15% San Tan Freeway, East Ray Road, East 3% Williams Field Road, East 5% Pecos Road, East 1% Power Road, South 2% Higley Road, South 4% 5% Pecos Road, West Williams Field Road, West 10% Ray Road, West 10% San Tan Freeway, West 21% Total 100%

The next step is to run the TransCAD program gravity model to create tables of trip origins and destinations. The gravity model is the most widely used trip distribution model. This model explicitly relates flows between zones to inter-zonal impedance to travel.

The assumption behind the gravity model is that the number of trips produced at zone i that are attracted to zone j is proportional to:

- The number of trips produced in zone i
- The number of trips attracted to zone j
- A function of the relative impedance between the zones, called impedance.

For this study the impedance between zones i and j is defined as:

$$F(c_{ij}) = (1/c_{ij}) \times e^{-0.01(cij)}$$

Where, c_{ij} = travel time between zones i and j, which is distance times 60 divided by miles per hour. For external stations, a distance to the average location for trips going in that direction was added to the calculation of distance. The final step is to convert the trip matrices from the gravity model into trip matrices ready to assign to the network.

There are three trip matrices for assignment:

- 1. Average Daily Traffic (ADT) This is the daily trip table, balanced so that trips from zone i to zone j equal trips from zone j to zone i.
- 2. **AM Trip Table** The trip table made with AM inbound Productions and outbound Attractions is transposed and added to the trip table made with AM outbound Productions and inbound Attractions.
- 3. PM Trip Table The trip table made with PM inbound Productions and outbound Attractions is transposed and added to the trip table made with PM outbound Productions and inbound Attractions.

STUDY AREA TRAFFIC ASSIGNMENT

A traffic assignment was performed with the use of TransCAD transportation software. Vehicle trips between each origin and destination were determined as outlined above and combined in an origin-destination (O-D) matrix in TransCAD. A graphical representation of the transportation network servicing the study area was also created in TransCAD. The flows of traffic for each O-D pair in the matrix were loaded onto the transportation network. The number of trips assigned to a roadway is based upon the travel time each path could carry.

A User Equilibrium Capacity Restraint method was used to assign the trips within TransCAD. Capacity Restraint recalculates travel time on roadways based on the volume and level of congestion on them. The program then reassigns trips using the new travel times. This is repeated up to 20 iterations to achieve an equilibrium solution. Background traffic is included for the recalculation of travel time in each iteration.

User equilibrium uses an iterative process to achieve a convergent solution in which no traveler can improve his or her travel time by shifting routes.

In each iteration, network link flows are computed, which incorporate link capacity restraint effects and flow-dependent travel times. The formulation of the User Equilibrium problem as a mathematical program and the Frank-Wolf solution method employed in TransCAD are described in the TransCAD user manual, Technical Notes section in Chapter 9.

This process was first completed for the entire study area with full access on all site roadways and accesses. Figure 3 presents an area key map for the study area. Figure 4 presents the study area average daily traffic for full buildout, and Figure 5 presents AM and PM peak hour turning movements at critical intersections, expected to be traveling to and from the study area.

As mentioned in the TRIP GENERATION section, the study area includes the Cooley Station development, and several adjacent parcels. The adjacent parcels are the adjacent Park, the Dibella commercial and residential property and the adjacent existing high school.

BACKGROUND TRAFFIC

Background traffic is the amount of traffic that would be on area roads in the future, if the proposed development were not built.

For Year 2025, background values on the roadways were determined by subtracting the study area traffic, as described in the previous section, from the Year 2025 MAG projections for the area.

For Year 2015, the background traffic for Year 2025 calculated above was then taken and interpolated between existing counts and Year 2025 to obtain Year 2015 background volumes.

For Year 2025, average daily traffic was converted to hourly volumes using the following formula:

 $DDHV = AADT \times K \times D$

Where: AADT = forecast average annual daily traffic (vpd)

DDHV = directional design hourly volume (vph)

K = percent of AADT occurring in the peak hour, and

D = percent of peak-hour traffic in the heaviest direction

D = percent of peak-hour traffic in the heaviest direction.

A K value of 0.09 was used for the roadways. A D value of 60 percent was used, going westbound and northbound during the AM peak hour, and eastbound and southbound during the PM peak hour. To estimate total background AM and PM peak hour turns, a nonlinear programming procedure was developed. This inputs the approach and departure volumes determined above and a starting estimate of percent right and left turns for each approach.

[Title] Traffic Impact Study

LEGENO: Z: Average Daily Traffic (in bold for

TASK

Average Daily Study Area Traffic

Cooley Station Traffic Impact Study

Figure 4 Page 15 11/2006

This procedure produces turn volumes, which minimizes the following objective function:

Min.
$$K = \Sigma (V_E - V_C)^2 + 0.5 \times \Sigma (T_E - T_C)^2$$

Subject to: Total approach volume = Total departure volume

Approach volumes are held constant

All turns are non-negative

Approach and departure volumes are summation of turn volumes

Where: V_E , V_C = Estimated and output approach and departure volumes

 T_E , T_C = Estimated and output turning volumes for each approach.

Before running the optimization routine, total approach and departure volumes are balanced. This approach was used to estimate background traffic for Year 2025.

The resulting background average daily traffic for Year 2015 is shown on Figure 6, while the resulting average daily traffic for Year 2025 is shown on Figure 7, with AM and PM peak hour turning movements for Year 2025 shown on Figure 8.

TOTAL TRAFFIC

Total traffic is the sum of the site traffic plus the background traffic. Total estimated Year 2015 average daily traffic is shown on Figure 9. Total estimated average daily traffic for Year 2025 is shown on Figure 10, with AM and PM peak hour turning movements shown on Figure 11 for Year 2025.

TRAFFIC ANALYSIS

For Year 2015, generalized average daily service volumes by level of service (LOS) were used to estimate needed lanes. These daily service volumes were taken from Table 4-2 of *Quality/Level of Service Handbook*, prepared by State of Florida Department of Transportation, 2002. Excerpts from this publication are found in Appendix E. Level of service C was used to determine the break point between two-lane and four-lane roads, and Level of service D volume was used to determine the break between four-lane and six-lane roads. Roads operating at the low end of the range of service volumes are not recommended to have medians. These are minor arterials or collectors. The resulting recommended lanes for Year 2015 are found on Figure 12.

For Year 2025, the critical intersections were analyzed using the methodologies presented in the *Highway Capacity Manual*, 2000 Edition, and were evaluated using HCS 2000 Software. Capacity analysis was completed for both AM and PM peak hours for total Year 2025 traffic including full site buildout conditions.

LEGENO:

Z : Amongo Dody Traffic (in boild famr)

AM (PM) Background Traffic (Year 2025)

P Dolly Traffic (in bold form)

Average Daily Total Traffic (Year 2015)

Cooley Station Traffic Impact Study

Figure 9 Page 23

LEGENO

Signalized intersection analysis is based on control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The level of service (LOS) criteria for signalized intersection analysis is presented in Table 4. The signalized intersection analysis used a cycle length of 94 seconds.

Unsignalized intersections were analyzed as STOP sign controlled intersections using the unsignalized intersection portion of the HCS 2000 Software. The LOS for the "worst" turning movements is reported for unsignalized intersections. Usually, this is the left turn from the minor street or access drive. The LOS criterion for unsignalized intersections is reported in Table 5.

All unsignalized intersections were analyzed as full access intersections. STOP sign control was set on the minor street approach.

Most of the study intersections will operate at an LOS C or better under future conditions, with two exceptions.

The unsignalized intersection of Cooley Loop South and Cooley Loop West experiences an LOS E in the morning peak hour for northbound left turns. In addition, the signalized intersection of Williams Field Road and Recker Road experiences an LOS D in the evening peak hour.

The resulting levels of service are shown on Figure 13 for Year 2025 conditions. HCS worksheet summaries are included in Appendix A.

Table 4
Level of Service Criteria for
Signalized Intersections
Cooley Station Traffic Impact Study

Cooley Stant	on trajjie impaci study
Level of	Control Delay
Service	(sec./veh.)
Α	≤ 10.0
В	> 10.0 and ≤ 20.0
C	> 20.0 and ≤ 35.0
D	> 35.0 and ≤ 55.0
E	> 55.0 and ≤ 80.0
F	> 80.0

Source: Exhibit 16-2, Highway Capacity Manual 2000, Transportation Research Board

Table 5
Level of Service Criteria for
Unsignalized Intersections

Cooley Statio	n Traffic Impact Study
Level of	Control Delay
Service	(sec./veh.)
Α	≤ 10.0
В	$> 10.0 \text{ and} \le 15.0$
C	> 15.0 and ≤ 25.0
Ð	> 25.0 and ≤ 35.0
E	> 35.0 and ≤ 50.0
F	>50.0

Source: Exhibit 17-2, Highway
Capacity Manual 2000, Transportation
Research Board.

DESIGN ISSUES

Proposed Roundabouts

Roundabouts are proposed at several locations throughout the Cooley Station development, including several located along Boulevard Road between Cooley Loop South and Recker Road. All are on local or collector streets. If the outside radius of the circular roadway is between 100 and 110 feet, the roundabouts will provide adequate capacity, improved safety and trucks and fire trucks will be able to maneuver through them.

Right Turn Lanes

Right turn deceleration lanes are justified at the following locations due to high volumes of right turns:

- Power Road at Williams Field Road (southbound to westbound and eastbound to southbound)
- Recker Road at Ray Road (westbound to northbound and eastbound to southbound).

These are right turn lanes at signalized intersections that will experience high peak hour turning volumes and for which the right turn lanes result in an overall reduction in delay.

SIGNAL WARRANT ANALYSIS

The Maricopa Department of Transportation (MCDOT) has adopted guidelines for determining if traffic signals are warranted on the basis of estimates of average daily traffic (ADT). These are established by Policy/Procedure Guideline 4-4.6. These guidelines extrapolate the traffic signal warrants of the Manual on Uniform Traffic Control Devices (MUTCD) to estimates of total daily volumes. The guidelines are found in Appendix H.

Year 2015

These procedures were utilized with the average daily traffic volumes for Year 2015 at the following intersections:

- Williams Field Road at Cooley Loop East
- Recker Road at Cooley Loop North
- Recker Road at Williams Field Road
- Recker Road at Cooley Loop South
- Recker Road at Boulevard Road
- Williams Field Road at Cooley Loop West

Signal warrants were not completed for the following intersections since signals currently exist at these intersections:

- Recker Road at Ray Road
- Recker Road at Pecos Road
- Williams Field Road at Power Road

Table 6 compares approach volumes and warranting volumes for the above referenced intersections.

Table 6
Traffic Signal Needs Using ADT Volume Warrant (Year 2015)

Intersection	Williams Field	Recker Road at	Recker Road at
	Road at Cooley	Cooley Loop	Williams Field
	Loop East	North	Road
Major Street ADT	31,585	21,810	29,290
Major Street Warranting ADT	12,000	12,000	12,000
Minor Street Approach ADT	7,340	5,480	23,270
Minor Street Warranting Volume	3,000	3,000	4,000
Meets Warrant?	Yes	Yes	Yes

Intersection	Recker Road at	Williams Field	Recker Road at
	Cooley Loop	Road at Cooley	Boulevard
	South	Loop West	Road
Major Street ADT	22,405	28,980	17,250
Major Street Warranting ADT	12,000	12,000	12,000
Minor Street Approach ADT	7,540	6,230	7,800
Minor Street Warranting Volume	3,000	3,000	3,000
Meets Warrant?	Yes	Yes	Yes

As can be seen from Table 6, the following intersections are anticipated to meet traffic signal warrants fro Year 2015 conditions:

- Williams Field Road at Cooley Loop East
- Recker Road at Cooley Loop North
- Recker Road at Williams Field Road
- Recker Road at Cooley Loop South
- Recker Road at Boulevard Road
- Williams Field Road at Cooley Loop West

Year 2025

These procedures were utilized with the average daily traffic volumes for Year 2025 at the following intersections:

- · Recker Road at Galveston Road
- Williams Field Road at Wade Drive
- Williams Field Road at Access 2
- Williams Field Road at Access 1

Table 7 compares approach volumes and warranting volumes for the above referenced intersections.

Table 7
Traffic Signal Needs Using ADT Volume Warrant (Year 2025)

Intersection	Recker Road at Galveston Road	Williams Field Road at Wade Drive
Major Street ADT	24,575	29,830
Major Street Warranting ADT	12,000	12,000
Minor Street Approach ADT	8,190	3,450
Minor Street Warranting Volume	3,000	3,000
Meets Warrant?	Yes	Yes

Intersection	Williams Field Road at Access 1	Williams Field Road at Access 2
Major Street ADT	28,185	33,225
Major Street Warranting ADT	12,000	12,000
Minor Street Approach ADT	9,000	9,410
Minor Street Warranting Volume	3,000	3,000
Meets Warrant?	Yes	Yes

As can be seen from Table 7, the following intersections are anticipated to meet traffic signal warrants fro Year 2025 conditions:

- Recker Road at Galveston Road
- Williams Field Road at Wade Drive
- Williams Field Road at Access 2
- Williams Field Road at Access 1.

RECOMMENDATIONS

The proposed site is a mixed residential and commercial site that will generate an estimated 117,006 total trip ends per day, with 4,373 morning peak hour outbound trips total and 6,100 evening peak hour inbound trips total. The traffic disperses in such a way that it can be accommodated on the internal driveway and connecting arterial system with the following recommended improvements. Recommendations are shown on Figure 12 for Year 2015 and Figure 13 for Year 2025. Town of Gilbert standard cross sections are found in Appendix F.

Year 2015 Conditions:

- The following roadways are recommended to be four-lane, divided roadways for Year 2015:
 - Williams Field Road (west of Cooley Loop East and east of Access 2)
 - Power Road

- Williams Field Road between Cooley Loop East and Access 2 is recommended to have three lanes in each direction.
- The following roadways are recommended to be four-lane roadways for Year 2015 conditions:
 - Ray Road
 - Recker Road
- The following roadways are recommended to be four-lane roadways for Year 2015 conditions:
 - Galveston Road
 - Boulevard Road
 - Wade Drive
 - Cooley Loop
 - Williams Field Road (east of Power Road).
- Locations where traffic signals are expected to be warranted by 2015 are shown on Figure 12, and include the following:
 - Williams Field Road at Cooley Loop East
 - Recker Road at Cooley Loop North
 - Recker Road at Williams Field Road
 - Recker Road at Cooley Loop South
 - Recker Road at Boulevard Road
 - Williams Field Road at Cooley Loop West

Year 2025 Conditions:

- Right turn deceleration lanes are recommended at the following locations:
 - Power Road at Williams Field Road (southbound to westbound and eastbound to southbound)
 - Recker Road at Ray Road (westbound to northbound and eastbound to southbound).
- The internal collector streets should be designed in accordance with the Town of Gilbert design standards.
- Power Road and Ray Road are recommended to be six-lane roadways per the Town of Gilbert standards.
- The proposed roundabouts, including several located along Boulevard Road between Cooley Loop South and Recker Road are recommended to have an outside radius of the circular roadway between 100 and 110 feet. The roundabouts will provide

adequate capacity, improved safety and trucks and fire trucks will be able to maneuver through them.

- Additional traffic signals are recommended at the following locations for Year 2025 (recommendations are shown on Figure 13-1 and Figure 13-2):
 - Recker Road at Galveston Road
 - Williams Field Road at Wade Drive
 - Williams Field Road at Access 2
 - Williams Field Road at Access 1

APPENDIX A: CAPACITY SUMMARIES

Coneral Informa	tion				HCS+	DETAI	LED REP	ORT formation								
	SAD		······································					Intersection Recker Rd at Ray Road								
alyst	TASK Eng						Area T				areas	.oau				
Agency or Co.	_							Jurisdiction Gilbert								
Pate Performed	11/8/2006						Analys		טווט	eit						
ne Period							1		Ren	ker R	oad at Ray	v Roac	I AM Pk			
			 -				Project	ID O		2025	oad at Maj	y NOBC				
ume and Tim	ing Input															
				EB			WB				NB T = :	1			B 	
imber of Lanes	. NL		LT 1	TH 3	RT 1	LT 1	TH 3	RT		.T	TH	RT			TH	RT
	5, 191		L	$\frac{3}{T}$	R	1	$\frac{3}{7}$	$\frac{1}{R}$	1		2 TR	0	1 L		2	0
ne Group			35	457		25				98		1 24			R	-
blume, V (vph)	c 0/ LIV/		0	0	218	0	0	359 0	0		435	240			45	6
Heavy Vehicles			0.92	0.92	0.92	0.92	0.92	0.92	0.9		 	0	0		——	0
			0.92 A	0.92 A	0.92 A	0.92 A	0.92 A	0.92 A			0.92 A	0.92				0.92
retimed (P) or A			2.0	2.0	2.0	2.0	2.0	2.0	2.		2.0	A	2.0			A
tension of Effe			2.0	2.0	2.0	2.0	2.0	2.0	2.		2.0	+	2.0			
Frival Type, AT	5.170 G10011, 6		3	3	3	3	3	3	3		3	 	3		3	
ait Extension, U)F		3.0	3.0	3.0	3.0	3.0	3.0	3.6		3.0	+-	3.0			
tering/Metering			1.000							200	1.000	┼	1.00			
itial Unmet Dem			0.0	0.0	0.0	0.0	0.0	0.0	0.		0.0	+	0.0			
ad / Bike / RTO			0.0	0.0	60	0.0	0.0	0.0	0.1		0.0	40	0.0			0
ne Width			12.0	12.0	12.0	12.0		12.0	12		12.0	ᢡ	12.		2.0	۲
arking / Grade /	Parking		N	0	N	N	0	N	\ \ \ \ \		0	N	N)	N
arking Maneuve				1		_		1	$\neg \vdash$		1	\top				
ses Stopping,			0	0	0	0	0	0		0	0			0	0	
lin. Time for Pec	destrians, G _p			3.2			3.2				3.2			;	3.2	
tjasing	EW Perm		02		03	T	04	NS Pe	m	E	xcl. Left	T	07		80	 }
-1	G = 27.0	G=		G =		G=)	G = 10.4 G =				G =			
ing	Y = 4	Y =		Y =		Y =			Y = 4 Y =				Y =			
ration of Analy	sis, T = 0.25									Су	cle Length,	, C =	74.4			
ne Group Cap	acity, Control D	elay, ar	d LOS	Determin	ation											
		Ļ		EB		ļ	WB	T 5=	<u> </u>		NB				SB	
usted Flow Ra		-+	LT	-TH	172	LT	TH	RT	LT		TH	RT	L'		TH	RT
ne Group Capa			38	497	172	27	470	390	433	-	690		34		342	
c Ratio, X	acity, c	<u></u>	314 .12	1878 0.26	586 0.29	301 0.09	1878	586	655	\dashv	1158		51		212	
al Green Ratio	2 a/C		.36	0.26	0.29	0.09	0.25	0.67 0.36	0.66	\dashv	0.60 0.34		0.6			-
aform Delay, d			5.8		16.9	15.6		+	0.53	-		 	0.5			
togression Fact	<u> </u>		.000	16.7	1.000	1.000	1.000	19.9	16.2	\dashv	20.5	-	21.		3.3	
ay Calibration			.11	1.000 0.11	0.11	0.11	0.11	0.24	1.000	' -	1.000 0.18	 	1.0		000	 -
Jremental Dela			0.2		0.11	0.11	0.11		0.24			ļ	0.2		11	
nitial Queue Dela			0.2	0.1			+	2.9	2.5		0.8		3.		0.2	-
itrol Delay	ay, u ₃	 -		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0		.0	 -
4 1001 DCIAV	· · · · · · · · · · · · · · · · · · ·		16.0	16.8	17.2	15.7	16.7	22.8	18.7		21.3	ļ	24		8.5	
			В	В	В	В	B	С	В	ᆜ	C	<u> </u>	- C		3	<u> </u>
e Group LOS	Approach Delay 16.8			19.3		20.3					21.3					
e Group LOS									 							
e Group LOS			16. B 19.				B: 0.76			С				C B		

BACK-OF-QUEUE WORKSHEET

Car	ora	l Ir	for	nati	ion
CHEL	iei a	1 11		11211	

Project Description Recker Road at Ray Road AM Pk Hr-2025

Average Back of Queue

Average Back of Queue												
		EB			WB			NB	,		SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	#::
Lane Group	L	T	R	L	T	R	L	TR		L	TR	
Initial Queue/Lane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	[1]
Flow Rate/Lane Group	38	497	172	27	470	390	433	690		342	382	_
Satflow/Lane	864	1900	1615	830	1900	1615	1238	1810		971	1894	
Capacity/Lane Group	314	1878	586	301	1878	586	655	1158		514	1212	
Flow Ratio	0.0	0.1	0.1	0.0	0.1	0.2	0.3	0.2		0.4	0.1	(#)
v/c Ratio	0.12	0.26	0.29	0.09	0.25	0.67	0.66	0.60		0.67	0.32	
Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		1.000	1.000	(III)
Arrival Type	3	3	3	3	3	3	3	3		3	3	
Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
PF Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Q1	0.5	2.7	2.5	0.4	2.5	6.8	4.8	6.2		3.8	3.1	13
kв	0.3	0.5	0.4	0.3	0.5	0.4	0.5	0.5		0.4	0.5	<u></u>
Q ₂	0.0	0.2	0.2	0.0	0.2	0.9	0.9	0.7		0.8	0.2	
Q Average	0.6	2.8	2.7	0.4	2.7	7.6	5.7	6.9		4.6	3.3	eran Lii l
Percentile Back of Queue (95th p	ercentile)											
fв%	2.1	2.0	2.0	2.1	2.0	1.9	1.9	1.9		2.0	2.0	l āi
Back of Queue	1.2	5.7	5.5	0.8	5.4	14.4	11.1	13.1		9.1	6.6	
Queue Storage Ratio												-I
Queue Spacing	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0		25.0	25.0	
Queue Storage	0	0	0	0	0	0	0	0		0	0	L Ti
Average Queue Storage Ratio												
95% Queue Storage Ratio										<u> </u>		上亞

Copyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 4:

		TWO-WAY STO	P CONTROL	SUMMAR	Υ				
neral Information			Site Info	ormation					
unalyst	MG		Intersect			Galveston R	d at Wade Driv	re	
Agency/Co.	TASK Eng		Jurisdict			Gilbert			
ite Performed	8/8/2006		Analysis	Year	2025				
alysis Time Period	AM PK Hr-20								
Project Description Galveston A	Road at Wade Drive	AM Pk Hr-2025	North (Co	uth Div. to 1	4 1 0 :				
ersection Orientation: East-V	lest			uth Street: 1 riod (hrs): 0					
			JSLUGY I C	1100 (1113). 0	.20				
. uhicle Volumes and Adjus	unents	Eastbound				14/41			
jor Street vement	1	2	3		4	Westbour 5	10	6	
Vench		 	R		L	T		R	
Hume (veh/h)	5	68	5		5	253		5	
dume (veh/h) ak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92	
urly Flow Rate, HFR (veh/h)	5	73	5		5	274		5	
Heavy Vehicles	0				0				
Median Type				Undivide	d	<u> </u>			
Channelized			0		, w			0	
rijes	1	1	0 1		1	1		0	
nfiguration	L		TR		L			TR	
stream Signal		0				0			
vilnor Street		Northbound				Southbour	nd		
4ovement	7	8	9		10	11		12	
	<u> </u>	T	R		<u>L</u>	T		R	
Jume (veh/h) Peak-Hour Factor, PHF	18 0.92	55 0.92	8		5	16		5	
reak-nour Factor, PHP urly Flow Rate, HFR (veh/h)	19	59	0.92 8		0.92 5	0.92		0.92	
rcent Heavy Vehicles	0	0	- 			17		5	
Percent Grade (%)		0	0_		0	0	L	0	
red Approach		T N	7						
		0				N			
Storage RT Channelized			- o			0		0	
rines	1	1	0		1	1		0	
nfiguration	1		TR		L			TR	
Delay, Queue Length, and Leve	l of Sonios								
proach	Eastbound	Westbound		Northbound		1	Southbound		
vement	1	4	7	8	9	10	11	12	
The Configuration	L	L	L	 	TR	1		TR	
veh/h)	5	5	19		67	5		22	
im) (veh/h)	1295	1533	558	 	586	508		593	
H	0.00	0.00	0.03	<u> </u>	0.11	0.01	 -	0.04	
% queue length	0.01	0.01	0.11		0.38	0.03		0.12	
ப்ntrol Delay (s/veh)	7.8	7.4	11.7		11.9	12.2		11.3	
LOS	A	А	В		В	В		В	
proach Delay (s/veh)				11.9			11.5		
pproach LOS	_	-		В			В		
pringht © 2005 University of Florida, All Rig	hts Reserved			HCS+™ Ver	sion 5.2		Generated: 1	1/8/2006 4:58 /	

General Information			Site Info	rmation				
Analyst	MG		Intersection	on		Galveston Rd	at Wade Di	ive
Agency/Co.	TASK Eng		Jurisdictio		Gilbert	Gilbert		
Date Performed	8/8/2006		Analysis	/еаг		2025		
Analysis Time Period	AM PK Hr-20	25				<u> </u>		
Project Description Galveston F	Road at Wade Drive	AM Pk Hr-2025						
East/West Street: Galveston Roa					Wade Drive			
ntersection Orientation: East-W	'est		Study Peri	od (hrs):	0.25			
Vehicle Volumes and Adjust	ments							
Major Street		Eastbound				Westboun	d	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)	5	68	5		5	253	_	5
Peak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
Hourly Flow Rate, HFR (veh/h)	5	73	5		5	274		5
Percent Heavy Vehicles	0		<u> </u>		0			
Median Type				Undivid	ed			
RT Channelized			0					
Lanes	1	1	0		1	1		0
Configuration	L		TR		<u> </u>			TR
Upstream Signal		0	<u> </u>			0		
Minor Street		Northbound				Southbour	nd	4.0
Movement	7	8 T	9 R		10 L	11 T	 	12 R
Volume (veh/h)	18	55	8		5	16		5
Peak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
Hourly Flow Rate, HFR (veh/h)	19	59	8		5	17		5
Percent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N	7			N		
Storage		0				0		
RT Channelized			0					ō
Lanes	1	1	0		1	1		0
Configuration	L		TR		L		L_	TR
Delay, Queue Length, and Leve	l of Service							
Approach	Eastbound	Westbound		Northbou	ind		Southbound	1
Movement	11	4	7	8	9	10	11	
Lane Configuration	L	L	L		TR	L		
v (veh/h)	5	5	19		67	5		
C (m) (veh/h)	1295	1533	558		586	508		
v/c	0.00	0.00	0.03		0.11	0.01		
95% queue length	0.01	0.01	0.11		0.38	0.03		
Control Delay (s/veh)	7.8	7.4	11.7 1		11.9	12.2		
LOS	Α	A	В		В	В	<u> </u>	
Approach Delay (s/veh)	-	_		11.9			11.5	
Approach LOS	_		T	В			В	
Copyright © 2005 University of Florida; All Ri	ights Reserved	<u> </u>		HCS+™ \	Version 5.2		Generated	1: 11/8/2
ALLEGISTIC OF AUGUST CONTRACTORS OF A CONTRACT AND A CONTRACTORS OF A CONT	J 110001100			1,00				

eneral Information			Site Info	rmation					
nalyst	MG		Intersect	on		Galveston R	d at Wade Driv	e	
gency/Co.	TASK Eng		Jurisdicti			Gilbert			
ate Performed	8/8/2006		Analysis	Year		2025			
nalysis Time Period	PM PK Hr-20					_ <u> </u>			
oject Description Galveston I		PM Pk Hr-2025	- hi						
st/West Street: Galveston Rosersection Orientation: East-W				ith Street: riod (hrs):	Wade Drive				
			Study Fe	iou (nrs).	0.23				
hicle Volumes and Adjust	ments						 		
ajor Street		Eastbound			·	Westbour	nd .		
vement	1	2 T	3 R		4 L	5 T		<u>6</u> R	
lume (veh/h)	5	241	5		5	115		5	
ak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92	
ourly Flow Rate, HFR (veh/h)	5	261	5		5	124		5	
	0			- +					
rcent Heavy Vehicles	- U				0		<u> </u>		
edian Type				Undivide	ed			******	
Channelized			0			1		0	
nes	1	1	0		1	1		0	
nfiguration	L		TR		L.			TR	
stream Signal		0				0			
nor Street		Northbound				Southbou	nd		
evement	7	8	9		10	11		12	
<u></u>	L	T	R		L	Т		R	
lume (veh/h)	0.92	25 0.92	23 0.92		5 0.92	59 0.92		5	
ak-Hour Factor, PHF urly Flow Rate, HFR (veh/h)	7	27	24		0.92 5	64		0.92 5	
	0	0	0		0	0			
rcent Heavy Vehicles					0			0	
ercent Grade (%)	 	0				0			
red Approach		N				N			
Storage		0	-			0			
Channelized			0			1		0	
nes	1	11	0		1	1		0	
nfiguration	L		TR		<u>L</u>	<u> </u>		TR	
lay, Queue Length, and Leve	of Service								
oroach	Eastbound	Westbound		Northbour	nd		Southbound		
vement	1	4	7	8	9	10	11	12	
ne Configuration	L	L	L.		TR	L		TR	
veh/h)	5	5	7		51	5		69	
بس) (veh/h)	1469	1310	473		623	496		546	
	0.00	0.00	0.01		0.08	0.01		0.13	
% queue length	0.01	0.01	0.05		0.27	0.03		0.43	
introl Delay (s/veh)	7.5	7.8	12.7		11.3	12.3	1	12.5	
os	А	Α	В		В	В		В	
proach Delay (s/veh)		<u> </u>		11.5			12.5	<u> </u>	
proach LOS	<u> </u>			B B					

					HCS+"	DETAILE									
eneral Informati	tion						Site Info		Caluar	ton Road/Red	ver Road			— r	
Analyst	JL						Intersect Area Typ			ion Road/Red er areas	VEL LOGG			ب	
Agency or Co.	TASK Engineer	ring					Jurisdiction Gilbert								
ite Performed	11/7/2006						Analysis Year							- <u>-</u> [
ı ime Period							1		ed AM						
							Project I	D	Pk Hr-						
olume and Tim	ing Input												SB		
				EB			WB			NB				T ==	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
umber of Lanes	, N1		1	1	0	1	1	0	1	2	0	1	2	()	
Lane Group			L	TR		L	TR		L	TR		<u> </u>	TR	├	
'olume, V (vph)			60	37	156	5	151	46	36	977	5	12	700	<u> </u>	
Heavy Vehicles	s, %HV		0	0	0	0	0	0	0	0	0	0	0		
Peak-Hour Factor			0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Pretimed (P) or A			A	A	Α	A	Α	Α	A	A	A	A	Α	/n	
itart-up Lost Tim			2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	<u> </u>	
Extension of Effe			2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	<u> </u>	
Arrival Type, AT			3	3		3	3		4	4		4	4		
Jnit Extension, U	Æ		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0		
Filtering/Metering			1.000	1.000	1	1.000	1.000		1.00	0 1.000		1.000	1.000	Į į	
Initial Unmet Den			0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	ييدن	
ed / Bike / RTO			0	0	0	0	0	0	0	0	0	0	0	0	
Lane Width			12.0	12.0	1	12.0	12.0		12.0	12.0		12.0	12.0		
Parking / Grade /	/ Parking		N	0	N	N	0	N	N	0	N	N	0	Ñ	
Parking Maneuve			1-	1	1	1								L	
Buses Stopping,			0	0	1	0	0		0	0		0	0		
Min. Time for Pe				3.2			3.2			3.2			3.2		
Phasing	EW Perm	T	02		03	T 0-	4	NS Per	m	06		07		08 5	
- masing	G = 19.0	G=		G =		G=	G = 33.0		G =		G≈	G≈			
Timing	Y = 4	Y =		Y =		Y =		Y = 4	Y = Y			= Y = '			
Duration of Anal		<u> </u>		- 						Cycle Lengt	.0	,			
	pacity, Control D	elav a	and LOS I	Determina	tion										
Lane Group Ca	pacity, control b	<u> </u>	ing Loui	EB			WB			NB			SB	 -	
			LT	TH	RT	ĹŤ	TH	RT	LT	TH	RT	LT	TH	+	
Adjusted Flow R	ate, v		67	214		6	219		40	1092		13	798	+-	
Lane Group Cap	pacity, c		341	529		345	581	<u> </u>	351	1988	 	234	1982	+	
v/c Ratio, X			0.20	0.40		0.02	0.38		0.11	0.55	<u> </u>	0.06	0.40	┵	
Total Green Rat	io, g/C		0.32	0.32		0.32	0.32		0.55	0.55	1	0.55	0.55	+-	
Uniform Delay,	d ₁		14.9	16.1		14.1	15.9		6.5	8.7		6.3	7.8	-1-1	
Progression Fac	ctor, PF		1.000	1.000		1.000	1.000		0.681	0.681		0.681	0.681	1.	
Delay Calibratio	n, k		0.11	0.11		0.11	0.11		0.11	0.15		0.11	0.11	-∔	
Incremental Del			0.3	0.5		0.0	0.4		0.1	0.3		0.1	0.1		
Initial Queue De		_	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		
Control Delay			15.2	16.6		14.1	16.3		4.6	6.3		4.4	5.5	4	
Lane Group LO	S		В	В		В	В		A	A		Α	A	1	
Approach Delay			16.			1	6.3		1	6.2			5.4		
Approach LOS			B			1	В			Α			Α		
Intersection De			8.0			X. =	0.50		Inters	ection LOS			Α		
THE SECTION DE	versity of Florida All Rio							HOOPE	Version 5		Ge	Generated: 11/8/2006			

BACK-OF-QUEUE WORKSHEET

ceneral Information

Roject Description Galveston Road at Recker Road AM Pk Hr-2025

verage Back of Queue

	EB			WB			NB		SB		
LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
L	TR		L	TR		L	TR		L	TR	
0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
67	214		6	219		40	1092		13	798	
1076	1670		1090	1834		638	1898		425	1892	
341	529		345	58 1		351	1988		234	1982	
0.1	0.1		0.0	0.1		0.1	0.3		0.0	0.2	
0.20	0.40		0.02	0.38		0.11	<i>0.5</i> 5		0.06	0.40	
1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
3	3		3	3		4	4		4	4	
1.00	1.00		1.00	1.00		1.33	1.33		1.33	1.33	
1.00	1.00		1.00	1.00		0.61	0.69		0.60	0.65	
0.8	2.8		0.1	2.8		0.2	4.3		0.1	2.6	
0.3	0.4		0.3	0.4		0.3	0.6		0.2	0.6	
0.1	0.2		0.0	0.2		0.0	0.7		0.0	0.4	
0.9	3.0		0.1	3.1		0.2	4.9		0.1	3.0	,
ntile)											
2.1	2.0		2.1	2.0		2.1	2.0		2.1	2.0	
1.8	6.1		0.2	6.2		0.5	9.6		0.2	6.1	
25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
0	0		0	0		0	0		0	0	
			_					<u> </u>			
	0.0 67 1076 341 0.1 0.20 1.000 3 1.00 0.8 0.3 0.1 0.9 ntile) 2.1 1.8	LT TH L TR 0.0 0.0 67 214 1076 1670 341 529 0.1 0.1 0.20 0.40 1.000 1.000 3 3 1.00 1.00 1.00 1.00 0.8 2.8 0.3 0.4 0.1 0.2 0.9 3.0 ntile) 2.1 2.0 1.8 6.1	LT TH RT L TR 0.0 0.0 67 214 1076 1670 341 529 0.1 0.1 0.20 0.40 1.000 1.000 3 3 1.00 1.00 1.00 1.00 0.8 2.8 0.3 0.4 0.1 0.2 0.9 3.0 ntile) 2.1 2.0 1.8 6.1	LT TH RT LT L TR L 0.0 0.0 0.0 67 214 6 1076 1670 1090 341 529 345 0.1 0.1 0.0 0.20 0.40 0.02 1.000 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 0.8 2.8 0.1 0.3 0.4 0.3 0.1 0.2 0.0 0.9 3.0 0.1 ntile) 2.1 2.0 2.1 1.8 6.1 0.2	LT TH RT LT TH L TR L TR 0.0 0.0 0.0 0.0 67 214 6 219 1076 1670 1090 1834 341 529 345 581 0.1 0.1 0.0 0.1 0.20 0.40 0.02 0.38 1.000 1.000 1.000 1.000 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.8 2.8 0.1 2.8 0.3 0.4 0.3 0.4 0.1 0.2 0.0 0.2 0.9 3.0 0.1 3.1 ntile) 2.1 2.0 2.1 2.0 1.8 6.1 0.2 6.2	LT TH RT LT TH RT L TR L TR	LT TH RT LT TH RT LT L TR L TR L 0.0 0.0 0.0 0.0 0.0 67 214 6 219 40 1076 1670 1090 1834 638 341 529 345 581 351 0.1 0.1 0.0 0.1 0.1 0.20 0.40 0.02 0.38 0.11 1.000 1.000 1.000 1.000 1.000 3 3 3 3 4 1.00 1.00 1.00 1.00 1.33 1.00 1.00 1.00 1.00 0.61 0.8 2.8 0.1 2.8 0.2 0.3 0.4 0.3 0.4 0.3 0.1 0.2 0.0 0.2 0.0 0.9 3.0 0.1 3.1 0.2 <	LT TH RT LT TH RT LT TH RT LT TR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67 214 6 219 40 1092 1076 1670 1090 1834 638 1898 341 529 345 581 351 1988 0.1 0.1 0.0 0.1 0.1 0.3 0.20 0.40 0.02 0.38 0.11 0.55 1.000 1.000 1.000 1.000 1.000 1.000 3 3 3 3 4 4 4 4 4 4 4 1.00 1.00 1.00 1.00 1.33 1.33 1.00 1.00 1.00 0.61 0.69 0.8 2.8 0.1 2.8 0.2 4.3 0.1 0.2 0.0	LT TH RT LT TH RT LT TH RT LT TH RT LT TR DT LT TR DT LT TR DT DT<	LT TH RT LT TH RT LT TH RT LT TH RT LT TR L TR L L TA TA TA TA TA TA TA TA	LT TH RT LT TH RT LT TH RT LT TH RT LT TR L TS

Copyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:01 AM

			Site Informa	tion				
eneral Information			Intersection			llector Rd at Bo	ulevard Rd	
nalyst	MG		Jurisdiction			Gilbert 2025		
gency/Co.	TASK Eng 8/8/2006		Analysis Year		120	25		—
ate Performed	AM PK Hr-2025							
nalysis Time Period	d at Boulevard Rd AM	Pk Hr-2025	North/South S	troot: Bouley	ard Road			<u> </u>
roject Description Collector Road ast/West Street: Collector Road			Study Period	(hrs): 0.25	ara me			1.,
itersection Orientation: East-Wes	it		Study Ferrod	11.07.				
ehicle Volumes and Adjustm	ents					Westbound		
lajor Street		Eastbound	3		4	5		6 📲
Movement	1	2	R		L	Т		R
	<u></u>				3			92
/olume (veħ/ħ)	0.92	0.92	0.92	0	92	0.92		
Peak-Hour Factor, PHF		0	0		3	0		2
lourly Flow Rate, HFR (veh/h)	0				0	~		- 1
Percent Heavy Vehicles	0	<u> </u>	l	Undivided				
Median Type		T	0					0
RT Channelized		1	0		0	0		0
Lanes	0	 			TR	LR		
Configuration		1				0		
Upstream Signal		Northbound				Southbound		12
Minor Street	7	1 8	9		10	11 T	_	R
Movement		T	R		<u>_</u>	50		
	 	196	116		0.92	0.92		0.92
Volume (veh/h) Peak-Hour Factor, PHF	0.92	0.92	0.92		3	54		0
Hourly Flow Rate, HFR (veh/h)	0	213	126		0	0		0
Percent Heavy Vehicles	0	0				0		
Percent Grade (%)		0				N		
Flared Approach		N				0		
Storage		0	0					0
RT Channelized		1	0		1	1		0
Lanes	0		TR		L	T		
Configuration								
Delay, Queue Length, and Lev	el of Service	184- oth nund	7	Northbound			Southbound	
Approach	Eastbound	Westbound	7	8	9	10	11	
Movement	1	4			TR	L	T	
Lane Configuration		LTR			339	3	54	
v (veh/h)		3		 	955	569	890	
C (m) (veh/h)		1636			0.35	0.01	0.06	
v/c		0.00		 	1.62	0.02	0.19	
95% queue length		0.01		 	10.8	11.4	9.3	
Control Delay (s/veh)		7.2		 	В	В	A	
LOS		A		100	ــــــــــــــــــــــــــــــــــــــ	-	9.4	
Approach Delay (s/veh)	_			10.8		+	Α	
A Abbiogram = > .		-	ł	В			Generated	

		TWO-WAY STO			· •							
neral Information			Site Info									
nalyst	MG		Intersecti				at Boulevard	₹d				
gency/Co. te Performed	TASK Eng 8/8/2006		Jurisdiction			Gilbert						
alysis Time Period	PM PK Hr-2	225	Analysis	rear		2025						
pject Description Collector F						 						
st/West Street: Collector Roa	nd	FW FK 111-2025	North/Sou	ith Street:	Boulevard Road							
rsection Orientation: East-V				iod (hrs): (
nicle Volumes and Adjus	tments											
jor Street	1	Eastbound				Westbou						
rement	1	2	3		4	5		6				
	L	Т	R		L	T		R				
lume (veh/h)					12			2				
ak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92				
irly Flow Rate, HFR (veh/h)	0	0	0		13	0		2				
rcent Heavy Vehicles	0	_	_		0							
				Undivide								
dian Type			1	Unaivide	:u	,						
Channelized			0					0				
nes	0	0	0		0	0		0				
nfiguration					LTR	LR						
tream Signal		0				0						
nor Street		Northbound				Southbou	nd					
vement	7	8	9		10	11		12				
	L	T	R		L	Т		R				
iume (veh/h)		84	52		3	178						
ak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92				
irly Flow Rate, HFR (veh/h)	0	91	56		3	193		0				
cent Heavy Vehicles	0	0	0		0	0		0				
rcent Grade (%)		0				0						
ed Approach		N	1			N						
forage		0				0						
Channelized			0					0				
es	0	1	0		1	1		0				
figuration			TR		L	T						
lay, Queue Length, and Leve	el of Service											
roach	Eastbound	Westbound		Northboun	ıd		Southbound					
rement	1	4	7	8	9	10	11	12				
<i>,</i>	,	L	· · · · · ·	-		- 		 				
ne Configuration		LTR			TR	<u> </u>	T	 				
eh/h)		13			147	3	193					
نام) (veh/h)		1636			937	767	863					
		0.01			0.16	0.00	0.22	T				
6 queue length		0.02			0.56	0.01	0.86	1				
£ 		<u></u>	 					 				
ntrol Delay (s/veh)		7.2			9.6	9.7	10.4	<u> </u>				
ns		A			A	Α	В	1				
roach Delay (s/veh)	-	_		9.6			10.4					
		 										

TWO-WAY STOP CONTROL SUMMARY Site Information General Information Cooley Loop N./Cooley Loop W. MG Intersection Analyst Jurisdiction Agency/Co. TASK Eng 2025 Analysis Year 8/8/2006 Date Performed AM PK Hr-2025 Analysis Time Period Project Description Cooley Loop North at Cooley Loop West AM Pk Hr-2025 North/South Street: Cooley Loop West East/West Street: Cooley Loop North 0.25 Intersection Orientation: East-West Study Period (hrs): Vehicle Volumes and Adjustments Westbound Eastbound Major Street 2 3 4 5 6 1 Movement R L T R L Ŧ 16 114 46 19 Volume (veh/h) 0.92 0.92 0.92 0.92 0.92 0.92 Peak-Hour Factor, PHF 49 20 17 0 Hourly Flow Rate, HFR (veh/h) 123 0 0 -0 Percent Heavy Vehicles Undivided Median Type 0 0 RT Channelized 0 1 0 0 TR L T Configuration 0 Upstream Signal Southbound Northbound Minor Street 12 9 10 11 Movement 8 T R R L Ĺ T 0 3 Volume (veh/h) 0.92 0.92 0.92 0.92 0.92 Peak-Hour Factor, PHF 0.92 0 0 0 9 Hourly Flow Rate, HFR (veh/h) 3 0 0 0 0 0 0 0 Percent Heavy Vehicles 0 0 Percent Grade (%) Ν N Plared Approach 0 0 Storage 0 0 RT Channelized 0 0 0 0 0 0 anes LR Configuration Delay, Queue Length, and Level of Service Southbound Westbound Northbound Eastbound Approach 1; 10 11 7 8 1 4 Movement LR ane Configuration L 12 20 v (veh/h) 1417 869 C (m) (veh/h) 0.01 0.01 v/c 0.04 0.04 95% queue length 9.2 7.6 Control Delay (s/veh) Α Α LOS 9.2 Approach Delay (s/veh)

_

Approach LOS

Α

		TWO-WAY STO	P CONTROL	SUMM	ARY						
eneral Information			Site Info	rmatio	n						
, unalyst	MG		Intersect				Cooley Loop N./Cooley Loop W.				
Agency/Co.	TASK Eng		Jurisdicti				Gilbert				
ate Performed	8/8/2006		Analysis	Year			2025				
nalysis Time Period	PM PK Hr-20										
Project Description Cooley Loc	p North at Cooley Lo	op West PM Pk Hr-202									
st/West Street: Cooley Loop	Vorth		North/Sou			y Loop We	st				
ersection Orientation: East-V	Vest		Study Per	riod (hrs)	: 0.25						
hicle Volumes and Adjus	tments										
ajor Street		Eastbound					Westbou	nd			
vement		2	3			4	5			6	
	<u> </u>	T	R			L				R	
lume (veh/h)		67	13			2	30				
ak-Hour Factor, PHF	0.92	0.92	0.92		0	.92	0.92			0.92	
ourly Flow Rate, HFR (veh/h)	0	72	14			2	32			0	
rcent Heavy Vehicles	0	_1				0	<u> </u>			_	
Median Type				Undi	vided						
Channelized			0							0	
nes	0	1	0			1	1			0	
nnfiguration			TR		L		T				
stream Signal		0					0				
Minor Street		Northbound					Southbou	nd			
Movement	7	8	9			10	11			12	
	L	T	R			L	Т			Ŕ	
lume (veh/h)	20		42								
Peak-Hour Factor, PHF	0.92	0.92	0.92		0	.92	0.92			0.92	
urly Flow Rate, HFR (veh/h)	21	0	45			0	0			0	
cent Heavy Vehicles	0		0			0	0			0	
Percent Grade (%)							0				
red Approach		N					N				
Storage		0					0				
RT Channelized			0			·····			0		
ines	0	0	0			0	0			0	
nfiguration	<u> </u>	LR	<u> </u>								
Delay, Queue Length, and Leve	l of Service										
proach	Eastbound	Westbound		Northb	ound			Southbo	und		
vement	1	4	7	8		9	10	11		12	
ine Configuration		L		LR				1			
('/eh/h)		2		66							
_m) (veh/h)		1523		952	2		 				
) <u> </u>		0.00		0.0	7		1	1			
% queue length		0.00		0.2	2			1			
introl Delay (s/veh)		7.4		9.1			1				
.os		Α	1	A			1				
proach Delay (s/veh)				9.1	'					<u> </u>	
pproach LOS	-	-		А							
pryright @ 2005 University of Florida, All Rig	ints Reserved			HCS+™	Version 5.	2		Gener	ated: 11	/8/2006 5:05 A	

General Inform	nation				HCS+	DETAIL									
	MG				-		Site Information Intersection Recker Rd/ Cooley Loop North								
Analyst Agency or Co.	MG TASK Eng						Area Ty			ker Ku ther ai	•	LOUP NOTE	,		
Date Performed	_						Jurisdiction Gilbert								
Time Period	1 2/0/2006						Analysi		Gildert						
Time Period							1 -		Rec	ker Ro	ad at Cod	oley Loop	North		
							Project	טו		Pk Hr-					
Volume and Ti	ming Input		1	EB			WB		- 		NB		T	SB	
			LT	TH	RT	LT	ТН	RT	L	T	TH	RT	LT	TH	
Number of Lane	es, N ₁	····	1	1	0	1	1	0	1		2	0	1	2	
Lane Group			L	TR		L	TR		L		TR	<u> </u>	L	TR	
Volume, V (vph)		64	34	40	106	36	44		5	875	5	59	856	
% Heavy Vehic	les, %HV		0	0	0	0	0	0	0		0	0	0	0	
Peak-Hour Fact	tor, PHF		0.92	0.92	0.92	0.92	0.92	0.92	0.9	2	0.92	0.92	0.92	0.92	
Pretimed (P) or	Actuated (A)		A	A	A	A	A	A	A		Α	A	A	A	
Start-up Lost Ti	 		2.0	2.0		2.0	2.0	_	2.0	, 	2.0	 	2.0	2.0	
	fective Green, e		2.0	2.0	\dashv	2.0	2.0	$\neg \vdash$	2.0		2.0	 	2.0	2.0	
Arrival Type, Al			3	3		3	3	_	3		3	 	3	3	
Unit Extension,			3.0	3.0	_	3.0	3.0		3.0		3.0	 	3.0	3.0	
Filtering/Meterir			1.000	1.000		1,000	1.000	, —		000	1.000	 	1.000	1.000	
Initial Unmet Demand, Qb			0.0	0.0		0.0	0.0	_	0.0		0.0		0.0	0.0	
Ped / Bike / RT	OR Volumes		0	0	0	0	0	0	0		0	0	0	0	
Lane Width			12.0	12.0		12.0	12.0		12.	0	12.0		12.0	12.0	
Parking / Grade	/ Parking		N	0	N	N	0		N		0	N	N	0	
Parking Maneur			1	_						\neg	-	 	 	+	
Buses Stopping			0	0	_	0	0	<u> </u>		,	0	<u> </u>	0	0	
Min. Time for Po	edestrians, Gp		1	3.2		3.2		<u> </u>		3.2				3.2	
Phasing	EW Perm	Exc	d. Left	T	03	04		NS Pe	m	Б	cl. Left		07	T	
	G = 25.1	G= :	3.0			G = G = 32.1					G =		G =		
Timing	Y = 4	Y = ()	Y =		Y =	•	Y = 4			= 0 Y=		Y =		
Duration of Ana	lysis, T ≈ 0.25							<u> </u>		Cycl	e Length.	C = 73.6	3		
Lane Group Ca	apacity, Control D	elay, ar	nd LOS	Determin	ation					1 - 7 -					
				EB			WB			NB				SB	
A 35 1 - 3 F1 F	<u></u>		LT	TH	RT	LT	TH	RT	LT		TH	RT	LT		
Adjusted Flow F			70	80		115	87	ļ	5	_	956		64	932	
Lane Group Ca	pacity, c		581	596	_	588	594		363		1577		355	1577	
v/c Ratio, X	#in a/C		.12	0.13		0.20	0.15		0.01		.61		0.18	0.59	
Total Green Ra			.44	0.34	<u> </u>	0.44	0.34	<u> </u>	0.56		.44		0.56	0.44	
Uniform Delay,			3.9	16.7		14.2	16.8	-	15.5	-	5.9		17.7	15.8	
Progression Fa			.000	1.000		1.000	1.000	 	1.000		.000		1.000	1.000	
Delay Calibration			.11	0.11		0.11	0.11	<u> </u>	0.11		.19		0.11	0.18	
Incremental De			0.1	0.1		0.2	0.1		0.0		0.7		0.2	0.6	
Initial Queue De	elay, d ₃		0.0	0.0		0.0	0.0	ļ	0.0		0.0		0.0	0.0	
Control Delay			14.0	16.8		14.4	16.9	ļ	15.5	_	16.6		18.0	16.4	
Lane Group LO		_	В	В	<u> </u>	В	В	L	В	Ш.	В		В	B	
Approach Delay	<u> </u>		15.	5		15				16.6			<u> </u>	16.5	
Approach LOS			В				3			В				В -	
ntersection Delay 16.4			1		$X_c = 0$.38 Intersection LOS					В				

BACK-OF-QUEUE WORKSHEET

eneral Information												
2-oject Description Recker Road	d at Cooley Loop No	orth AM Pk	Hr-2025									
rerage Back of Queue												
⊋		EB				WB			NB			
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
ne Group	L	TR	ļ	L	TR	ļ	L	TR	ļ	L.	TR	
Mitial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
w Rate/Lane Group	70	80		115	87		5	956		64	932	
atflow/Lane	1332	1747		1347	1743		642	1898		629	1899	
pacity/Lane Group	581	596		588	594		363	1577		355	1577	
ow Ratio	0.1	0.0		0.1	0.0		0.0	0.3		0.1	0.3	
: Ratio	0.12	0.13		0.20	0.15		0.01	0.61		0.18	0.59	
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
rival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
21	0.8	1.1		1.4	1.2		0.0	7.9		0.6	7.6	
	0.4	0.4		0.4	0.4		0.3	0.5		0.3	0.5	
az.	0.1	0.1		0.1	0.1		0.0	0.8		0.1	0.8	
Average	0.9	1.2		1.5	1.3		0.0	8.7		0.7	8.4	
ercentile Back of Queue (9	5th percentile)											
>,	2.1	2.1		2.1	2.1		2.1	1.9		2.1	1.9	
ck of Queue	1.8	2.5		3.0	2.7		0.1	16.3		1.4	15.7	
ueue Storage Ratio												
eue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	

0

0

povright © 2005 University of Florida, All Rights Reserved

erage Queue Storage Ratio

0

0

ueue Storage

HCS+™ Version 5.2

0

0

Generated: 11/8/2008 5:05 AN

0

						HCS+	DETAIL											
General Informa	tion							_		nation								
Analyst	MG							Interse		1			d/ Cooley L	.00р	North			
Agency or Co.	TASK Eng							Area T	•		All of		areas					
Date Performed	8/8/2006							Jurisdi			Gilbe	rt						-
Time Period								Analys	is Ye	ear		-				1		
								Projec	t ID				oad at Coo 2025	iey L	.oop N	vortn		
Volume and Tim	ing Input					·							2020					
			T		EB			WE					NB				SB	
			LT	T	TH	RT	LT	TH		RT	Lī	Г	TH	R	T	LT	TH	RT
Number of Lanes	i, N1		1		1	0	1	1		0	1		2	0		1	2	
Lane Group			L		TR		L	TR			L		TR			L	TR	
Volume, V (vph)			51		104	20	50	23		17	1:	1	928	2	1	118	1290	
% Heavy Vehicle	s, %HV		0		0	0	0	0		0	0		0	0		0	0	6
Peak-Hour Facto	r, PHF		0.92		0.92	0.92	0.92	0.92		0.92	0.92	2	0.92	0.9	2	0.92	0.92	0.92
Pretimed (P) or A	ctuated (A)		Α		Α	Α	Α	Α		Α	A		Α	A		Α	Α	/ 1
Start-up Lost Tim	ie, li		2.0	\int	2.0		2.0	2.0			2.0		2.0			2.0	2.0	
Extension of Effe	ctive Green, e		2.0	floor	2.0		2.0	2.0			2.0		2.0			2.0	2.0	
Arrival Type, AT			3	\int	3		3	3			3		3			3	3	
Unit Extension, U	JE		3.0		3.0		3.0	3.0			3.0		3.0			3.0	3.0	
Filtering/Metering	j, l		1.000		1.000		1.000	1.00	00		1.0	00	1.000			1.000	1.000	
Initial Unmet Den	nand, Q _b		0.0		0.0		0.0	0.0			0.0		0.0			0.0	0.0	E. 1
Ped / Bike / RTO	R Volumes		0		0	0	0	0		0	0		0	0		0	0	0
Lane Width			12.0		12.0		12.0	12.0			12.0)	12.0			12.0	12.0	E F
Parking / Grade /	Parking		N	T	0	Ν	N	0		Ν	N		0	N		Ν	0	N
Parking Maneuve	ers, N _m			Т]										
Buses Stopping,	Nв		0	Т	0		0	0			0)	0			0	0	
Min. Time for Ped	destrians, Gp				3.2			3.2	?				3.2				3.2	
Phasing	EW Perm	Ex	cl. Left		C)3	0	4	T	NS Per	n	E	xcl. Left	T		07	Ō	8 - ;
-	G = 25.1	G≃	3.0		G =		G=		G	= 32.1		G=	= 5.4	T	G =		G=	4C 18
Timing	Y = 4	Y =	0		Y =		Y =		Υ	= 4		Υ =	= 0		Y =		Y =	
Duration of Analy	/sis, T = 0.25											Су	cle Length,	C =	73.6	·		l D
Lane Group Cap	acity, Control De	lay, a	nd LOS I	_		tion												
1		L	, - 1	_	<u>B</u>	DT.	17	WB	_		17		NB			 	SB	T + 5
Adjusted Flow Ra	ate v	-+	LT 55	TI	H 35	RT	LT 54	TH 43	+-	RT	LT	-+	TH 1032	RT		LT 128	TH 1410	
Lane Group Cap		\dashv	622		32			607			12							+-
v/c Ratio, X	аоку, С	+	0.09	0.2		·	539 0.10	0.07	+		334 0.04	-+	1573 0.66			334 0.38	1577 0.89	
Total Green Ratio	o. g/C	-		0.2			0.10	0.07	+-	 	0.56	}	0.00			0.56	0.44	
Uniform Delay, d			12.9	17.			14.6	16.4	十		24.8	-+	16.4			22.3	19.2	
Progression Fact	.		1.000		000		1.000	1.000	+		1.000		1.000			1.000	1.000	
Delay Calibration		-+	0.11	0.1			0.11	0.11	+		0.11	\dashv	0.23			0.11	0.42	
Incremental Dela		1	0.1		2		0.1	0.0	十		0.0		1.0			0.7	7.0	Ī II
Initial Queue Del		一	0.0	0.0	_		0.0	0.0	1		0.0	\dashv	0.0			0.0	0.0	
Control Delay		\neg	13.0	17	7.4		14.7	16.4	十		24.8		17.4			23.0	26.2	
Lane Group LOS	<u> </u>	\dashv	В	В			В	В	\top		С		В			С	С	
Approach Delay			16.	1			1.	5.5				17.	5			1	25.9	
Approach LOS			В					В				В			-		С	<u> </u>
Intersection Dela	ıy	1	21.9	9		~~	X _c =	0.55			Interse	ectio	n LOS				С	<u> </u>
		<u>·</u>																

BACK-OF-QUEUE WORKSHEET eneral Information miect Description Recker Road at Cooley Loop North PM Pk Hr-2025 erage Back of Queue WB EΒ NB SB LT TH RT LT TH RT LT TH RT LT ΤH RT ∍ Group L TR TR L TR L TR tial Queue/Lane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 v Rate/Lane Group 55 135 54 43 12 1032 128 1410 tflow/Lane 1426 1854 1234 1781 592 1893 592 1898 acity/Lane Group 622 632 539 607 334 1573 334 1577 ⊸w Ratio 0.0 0.1 0.0 0.0 0.0 0.3 0.2 0.4 0.09 Ratio 0.21 0.10 0.07 0.04 0.38 0.66 0.89 1.000 1.000 1.000 actor 1.000 1.000 1.000 1.000 1.000 3 3 3 3 /al Type 3 3 3 3 atoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 actor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.6 2.0 0.6 0.6 0.1 8.8 1.2 14.0 0.5 0.5 0.4 0.5 0.3 0.5 0.3 0.5 0.0 0.1 0.0 0.0 0.0 1.0 0.2 3.5 0.7 verage 2.1 0.7 0.6 9.8 1.4 17.5 ...centile Back of Queue (95th percentile) 2.0 2.1 2.1 1.8 2.1 1.7

ueue Storage Ratio									
ue Spacing	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	T
jueue Storage	0	0	0	0	0	0	0	0	
age Queue Storage Ratio									
% Queue Storage Ratio		1							

1.3

1.4

4.2

1.4

right © 2005 University of Florida, All Rights Reserved

c of Queue

HCS+™ Version 5.2

0.3

18.1

Generated: 11/8/2006 5:06 AN

30.2

2.9

eneral Information			Site Info	ormation				Fi
Analyst	MG		Intersect			Cooley Loop	N. at Boulevar	
'gency/Co.	TASK Eng		Jurisdicti			Gilbert		
ate Performed	8/8/2006		Analysis	Year		2025		
nalysis Time Period	AM PK Hr-20					L		
Project Description Cooley Loop		Rd AM Pk Hr-2025						
ist/West Street: Cooley Loop N				uth Street: E				
rersection Orientation: East-W			Study Pe	riod (hrs): 0	.25			
ehicle Volumes and Adjust	ments							
ajor Street		Eastbound				Westbour	ıd	
ovement		2	3		4	5 T		6
(-)	LL	Т	35		L			R
/olume (veh/h) ∍ak-Hour Factor, PHF	32 0.92	0.92	0.92		0.92	0.92		0.92
	34	0.92	38		0.32	0.32		0.92 ==
ourly Flow Rate, HFR (veh/h)			30					
Percent Heavy Vehicles	0				0			<u> </u>
edian Type				Undivide	d		·	
T Channelized			0					0 _
anes	1	0	1		0	О		0
onfiguration	1		R			1		
Jpstream Signal	- 	0				0	 	Fi
Minor Street		Northbound				Southbou	nd	
lovement	7	North Bould	9		10	11	1	12
	 	T	R		L	T		R
/olume (veh/h)	5	100				215		90
eak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
ourly Flow Rate, HFR (veh/h)	5	108	0		0	233		97
ercent Heavy Vehicles	0	0	0		0	0		0 =
Percent Grade (%)		0				0		
lared Approach		N				N		<u> </u>
Storage		0				0		
RT Channelized			0					0
anes	1	1	0		0	1		0 11
Configuration	L	T						TR
Delay, Queue Length, and Leve	l of Service							
pproach	Eastbound	Westbound	1	Northboun		1	Southbound	<u> </u>
	1	4	7	8	9	10	11	12
Movement			 			1 10	 	
ane Configuration	L		<u> </u>	T		 	<u> </u>	1/1
(veh/h)	34		5	108				330
C (m) (veh/h)	1636		499	809				845 T;
v/c	0.02		0.01	0.13				0.=
95% queue length	0.06	 	0.03	0.46	 	1		1.87
				+				1/2
Control Delay (s/veh)	7.2		12.3	10.1			 	
.os	<u> </u>		В	В				В
	-	-	ì	10.2	•		12.0	X.
Approach Delay (s/veh)								

neral Information			Site Inf	ormation				
nalyst	MG		Intersed	tion				
gency/Co.	TASK Eng		Jurisdic	tion		Gilbert		
ite Performed	8/8/2006		Analysis	Year		2025		
alysis Time Period	PM PK Hr-2							
oject Description Cooley Lo		Rd PM Pk Hr-2025	h					
st/West Street: Cooley Loop ersection Orientation: East-				outh Street: eriod (hrs):	Boulevard Rd			
			Study Fi	eriod (ms).	0.25			
hicle Volumes and Adju	stments	Eastbound					 	
jor Street vement		2	3			Westbou	nd	
Weinen			R		4	5 T		6 R
lume (veh/h)	73		88			- 		
ak-Hour Factor, PHF	0.92	0.92	0.92	2	0.92	0.92		0.92
urly Flow Rate, HFR (veh/h)	79	0	95		0	0		0
rcent Heavy Vehicles	0				0	<u>-</u>		
dian Type								
				Undivi	uea			
Channelized			0					0
nes	1	0	1		0	0		0
nfiguration	L		R	T				
stream Signal		0				0		
nor Street		Northbound				Southbou	ind	
vement	7	8	9		10	11		12
- (t /t-)	<u> </u>	T	R			T		R
iume (veh/h) ak-Hour Factor, PHF	30 0.92	330 0.92	0.92		0.92	131		63
urly Flow Rate, HFR (veh/h)	32	358	0.92		0.92	0.92		0.92 68
cent Heavy Vehicles	- 0	0	0	 -}				
rcent Grade (%)	- 					0		0
						0		
red Approach		N O				N		
Storage Channelized		<u> </u>	0					
hes	1	1	1 0		0	1		0
ifiguration			- 					
								TR
lay, Queue Length, and Lev Proach								
	Eastbound	Westbound	 	Northbo	und		Southbound	
/ement	1	4	7	8	9	10	11	12
ne Configuration	L		L	Т				TR
eh/h)	79		32	358				210
.n) (veh/h)	1636		517	702			 	723
	0.05		0.06	0.51			 	
` 	 		 -	 			 	0.29
queue length	0.15		0.20	2.92				1.21
ntrol Delay (s/veh)	7.3		12.4	15.3			<u> </u>	12.0
s	Α		В	С		1		В
roach Delay (s/veh)	-		1	15.1		1	12.0	
proach LOS			 	С			В	

					HCS+"	DETAIL											_
General Informa	ation								rmation								_
Analyst	MG						•	ersecti				ield Rd/W	'ade	Drive			
Agency or Co.	TASK Eng						- 1	ea Typ			ther a	reas					
Date Performed	8/8/2006							risdiction		Gilb	ŧπ						
Time Period							1	alysis		\ <i>AJilli</i>	ame F	ield Road	l at l	Made T	Driva		
							Pr	oject II) 			-2025	u	7000 2	21176		
Volume and Tin	ning Input																=
				EB				WB				NB				SB	
			LT	TH	RT	LT		TH	RT		Τ	TH	F	रा	LT	TH	
Number of Lane	s, N1		1	2	0	1	\perp	2	0	1		1	1)	1 1	1	
Lane Group			L	TR		L.		TR				TR	$oldsymbol{\perp}$		L	TR	
Volume, V (vph)			23	1045	21	5	\perp	1279	14	9	1	17	上	5	13	5	
% Heavy Vehicle	es, %HV		0	0	0	0		0	0	0		0)	0	0	
Peak-Hour Facto	or, PHF		0.92	0.92	0.92	0.92	(0.92	0.92	0.9	2	0.92	0.	92	0.92	0.92	_
Pretimed (P) or	Actuated (A)		Α	A	A	A		Α	A	A		Α		4	Α	Α	
Start-up Lost Tin	ne, lı		2.0	2.0		2.0	\perp	2.0		2.0)	2.0	<u> </u>		2.0	2.0	
Extension of Effe	ective Green, e		2.0	2.0		2.0	\Box	2.0		2.	2	2.0			2.0	2.0	
Arrival Type, AT			3	3		3		3	<u> </u>	3		3			3	3	
Unit Extension, l	JE		3.0	3.0		3.0		3.0		3.0)	3.0			3.0	3.0	_
Filtering/Metering	g, 1		1.000	1.000		1.00	0	1.000		1.0	000	1.000			1.000	1.000	
Initial Unmet Der	mand, Qь		0.0	0.0		0.0		0.0		0.	2	0.0			0.0	0.0	_
Ped / Bike / RTC	R Volumes		0	0	0	0		0	0	0		0	4	0	0	0	_
Lane Width			12.0	12.0		12.0		12.0		12.	0	12.0			12.0	12.0	
Parking / Grade	/ Parking		N	0	N	N		0	N	٨		0	/	٧	N	0	
Parking Maneuv	ers, Nm																
Buses Stopping,	NB		0	0		0		0			0	0			0	0	_
Min. Time for Pe	destrians, G _p			3.2				3.2				3.2				3.2	
Phasing	EW Perm	T	02		03		04	T	NS Per	m	T	06			07		0
	G = 37.2	G =		G=		G =			G = 20.0)	G=			G =		G =	_
Timing	Y = 4	Y =		Υ=		Y =			Y = 4		Υ=			Y =		Y =	-
Duration of Anal	ysis, T = 0.25										Сус	ie Length	, C =	= 65.2	?		_
Lane Group Ca	pacity, Control D	elay, a	nd LOS I	Determina	tion												_
				EB				VB				NB				SB	
A 1: 1 4 Floor 5			LT	TH	RT	LT	m		RT	LT		TH	F	<u>T</u>	LT	TH	_
Adjusted Flow R			25	1159		5		05		99		18	├		14	60	_
Lane Group Cap	pacity, c	+	122	2058		192	20			418		583	<u> </u>		435	503	_
v/c Ratio, X			0.20	0.56		0.03	0.6			0.24	-	0.03	<u> </u>		0.03	0.12	<u> </u>
Total Green Rat			0.57	0.57		0.57	0.5			0.31		0.31	<u> </u>		0.31	0.31	
Uniform Delay, o			6.8	8.9		6.1	9.8			16.9		15.8	<u> </u>		15.8	16.3	
Progression Fac			1.000	1.000		1.000	_	000		1.000	 +	1.000	<u> </u>		1.000	1.000	
Delay Calibration			0.11	0.16		0.11	0.2			0.11		0.11	_		0.11	0.11	
Incremental Dela			0.8	0.4		0.1	-	9		0.3	_	0.0	<u> </u>		0.0	0.1	_
Initial Queue De	lay, d ₃		0.0	0.0		0.0	0.0			0.0	ļ	0.0	_		0.0	0.0	_
Control Delay			7.6	9.2		6.2).8		17.2		15.8	L		15.9	16.4	
Lane Group LOS			Α	Α		A	В	1		В		В			В	B	
Approach Delay			9.2			1 1	10.8			<u> </u>	17.	2			 	16.3	
		f	Α			[В				В				<u> </u>	<u>B</u>	_
Approach LOS						_	0.53									В	_

BACK-OF-QUEUE WORKSHEET General Information Poject Description Williams Field Road at Wade Drive AM Pk Hr-2025 rerage Back of Queue EB WB NB SB LT TH RT ΤH RT LT TH RTTH RT LT LT ne Group L TR L TR L TR L TR tial Queue/Lane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25 5 w Rate/Lane Group 1159 1405 99 18 14 60 atflow/Lane 213 1894 337 1897 1900 1364 1417 1639 pacity/Lane Group 122 2058 192 2061 418 583 435 503 ow Ratio 0.1 0.3 0.0 0.4 0.1 0.0 0.0 0.0 0.03 0.20 0.56 0.68 0.24 0.03 0.03 0.12 Ratio actor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 3 3 3 3 ival Type 3 3 3 3 1.00 1.00 Ratoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.2 7.0 0.0 9.4 1.3 0.2 0.2 0.8 0.2 0.2 0.6 0.6 0.3 0.4 0.3 0.4 0.0 0.8 0.0 0.0 1.2 0.1 0.0 0.1 0.3 7.7 0.0 10.6 0.2 1.4 0.2 0.8 \verage ercentile Back of Queue (95th percentile) 2.1 2.1 2.1 1.9 1.8 2.1 2.1 2.1 0.5 0.1 k of Queue 14.6 19.5 3.0 0.5 0.4 1.7 ueue Storage Ratio 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 ∍ue Spacing 0 0 jueue Storage 0 0 0 0 0 0

right © 2005 University of Florida, All Rights Reserved

srage Queue Storage Ratio

n% Queue Storage Ratio

HCS+™ Version 5.2

Generated: 11/8/2006 5:11 AM

					Н	ICS+~ I	DETAIL	ED REP							
General Informa	ation								formation						
∖nalyst	MG							Interse			s Field Rd/V	vade Drive			E.
Agency or Co.	TASK Eng							Area T		All othe	areas				
Date Performed	8/8/2006							Jurisdi		Gilbert					C **
Time Period								Analys		William	s Field Roa	d at Wada	Drive		Ξ;
								Project	łD	PM Pk		d at Wade	Dive		
Volume and Tin	ning Input														
				E	3			WB			NB			SB	- 1
			LT	Ti	1	RT	LT	TH	RT	LT	TH	RT	LT	TH	ŖΤ
Number of Lanes	s, N1		1	2		0	1	2	0	1	1	0	1	1	1
Lane Group			L	TR			L	TR		L	TR		L	TR	
Volume, V (vph)			82	12.	33	82	5	1518	81	37	9	5	6	15	يم
% Heavy Vehicle	es, %HV		0	0		0	0	0	0	0	0	0	0	0	- 2
Peak-Hour Facto			0.92	0.9	2	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Pretimed (P) or A	Actuated (A)		A	A		A	A	A	A	A	A	A	A	A	痐
Start-up Lost Tin			2.0	2.0	,		2.0	2.0		2.0	2.0	1	2.0	2.0	
extension of Effe			2.0	2.0			2.0	2.0	1	2.0	2.0	1	2.0	2.0	+-
Arrival Type, AT			3	3			3	3		3	3	 	3	3	1
Jnit Extension, l			3.0	3.0	, 		3.0	3.0		3.0	3.0		3.0	3.0	1 10
iltering/Metering			1.000				1.000		, -	1.000		 	1.000	1.000	+-
nitial Unmet Der			0.0	0.0			0.0	0.0		0.0	0.0	+	0.0	0.0	
Ped / Bike / RTC			0.0	0.0		0	0.0	0	- 0	0.0	0.0	10	0	0	0
ane Width			12.0	12.0	, 		12.0	12.0	- _	12.0	12.0	+	12.0	12.0	1 5
Parking / Grade	/ Parking		N N	0	- -	N	N N	0	1 N	N 12.0	0	- N	N N	0	+ N
Parking / Grade				+-			+~-	╌	- ~		 	 	+	 	+~
Buses Stopping,			0	+ 0			10	0		10	 	-	0	10	Fin
Min. Time for Pe			- 	3.			- -	3.2		- -	3.2		+	3.2	1 10
		T :	B O-F:	- T	03				NS Pe				07	7	08
Phasing	EW Perm	——	B Only	├ऱ			 _	-			06	- -	07	{	08
Timing	G≈ 37.2	—	5.0	G			G=		G = 20.0 $Y = 4$) = 	G = Y =		G=	
	Y≈ 4	Υ =	4	Υ:	= 		Y =		Y = 4		=			Y =	Îm
Duration of Anal											ycle Lengti	n, C = 74.	2		n
Lane Group Ca	pacity, Control De	ay,	and LUS	Determ EB	inatio	"		WB			NB		т	SB	
		ł	LT	TH	F	रा	LT	TH	RT	LT	TH	RT	LT	TH TH	ii
Adjusted Flow R	ate, v		89	1429	+	$\neg \uparrow$	5	1738	1	40	15	1	7	105	7
Lane Group Cap		_	321	1797	\dashv		102	1800	1	353	487	1	383	447	1
v/c Ratio, X			0.28	0.80	_		0.05	0.97	1	0.11	0.03		0.02	0.23	1
Total Green Rat	io, g/C		0.62	0.50	1	-	0.50	0.50		0.27	0.27	 	0.27	0.27	┪
Uniform Delay, o			26.3	15.3			9.5	17.9	1	20.4	20.0	+	19.9	21.1	-
Progression Fac	<u> </u>		1.000	1.000	+		1.000	1.000	1	1.000	1.000	 	1.000	1.000	1-1
Delay Calibration			0.11	0.34			0.11	0.47	 	0.11	0.11	 	0.11	0.11	+-
			0.11	2.6	+-		0.11	14.0	 	0.11	0.0	┼──	0.0	0.17	+ fi
			0.0	0.0	+		0.0	0.0	 	0.0	0.0		0.0	0.0	 ``
Incremental Dela				J.U.			9.7	31.8	+	20.6	20.0	 	19.9	21.4	+-
Incremental Dela Initial Queue De				170				31.0	1	1 20.0	20.0	<u> </u>	19.9	21.4	1
Incremental Dela Initial Queue De Control Delay	elay, d ₃		26.8	17.9	4			1	1		0		מ	1 ^	
Incremental Del Initial Queue De Control Delay Lane Group LOS	elay, d ₃		26.8 C	В	1		Α	C		C	В	<u> </u>	В	C	
Incremental Dela Initial Queue De Control Delay Lane Group LOS Approach Delay	elay, d ₃		26.8 C 18.	B 4	1	_	A 3	1.8		2	0.4		В	21.3	
Incremental Dela Inițial Queue De Control Delay Lane Group LOS	elay, d ₃		26.8 C	B 4		-	A 3	1.8 C		2	0.4 C		В		

Seneral Information

goject Description Williams Field Road at Wade Drive PM Pk Hr-2025

Iverage Back of Queue				,— <u> </u>								
		EB		ļ	WB	,		NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
ane Group	L	TR		L	TR		L	TR		L	TR	
tial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
low Rate/Lane Group	89	1429		5	1738		40	15		7	105	
atflow/Lane	516	1882		204	1885		1309	1805		1421	1658	
apacity/Lane Group	321	1797		102	1800		353	487		383	447	
ow Ratio	0.2	0.4		0.0	0.5		0.0	0.0		0.0	0.1	
/c Ratio	0.28	0.80		0.05	0.97		0.11	0.03		0.02	0.23	
Factor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
rrival Type	3	3		3	3		3	3		3	3	
latoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
<u>,</u>	0.7	12.8		0.1	18.2		0.6	0.2		0.1	1.7	
7	0.3	0.6		0.2	0.6		0.3	0.4		0.3	0.4	
22	0.1	2.1		0.0	6.4		0.0	0.0		0.0	0.1	
Average	0.8	14.9		0.1	24.6		0.7	0.2		0.1	1.8	
ercentile Back of Queue (95th	percentile)								·		<u> </u>	
%	2.1	1.8		2.1	1.7		2.1	2.1		2.1	2.0	
ack of Queue	1.7	26.3		0.1	40.6		1.4	0.5		0.2	3.7	
ueue Storage Ratio												
ueue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
verage Queue Storage Ratio												
p												

copyright @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:13 AM

						HCS+	DETAIL	.ED	REPO	RT								
Seneral Informa	ation							_	Site Info		n							
λnalyst	MG							1	ntersec			W. Fie	id Rd	/Cooley	Loop We	est		
Agency or Co.	TASK Eng							Α	Area Tyj	oe .		All oth	er are	as				
Date Performed	8/8/2006							J	lurisdict	ion		Gilber	t					•
Time Period								A	Analysis	Year								<u>L</u> ,
								P	Project I	D				eld Road k Hr-202	' at Coole 5	y Loop		
Volume and Tin	nina lanut											7763(7	<u> </u>	(111-202	<u> </u>			
Volume and Tim	ing input		T		EB		T		WB			T		NB		T	SB	
			LT	Т	TH	RT	LT		ТН	R	T	LT	T	TH	RT	LT	TH	RI.
Number of Lane	s, N ₁		1	十	2	0	1		2	70		1		1	0	1	1	1
Lane Group			L	1	TR		1 4		TR	\top		L	\neg	TR	1	L	TR	1
Volume, V (vph)			6	十	1001	201	198		1144	—	2	87	一十	4	45	8	56	-
% Heavy Vehicle	s %HV		10	十	0	0	0		0	0		0		0	0	0	0	
Peak-Hour Factor			0.92	1	0.92	0.92	0.92		0.92	0.9		0.92		0.92	0.92	0.92	0.92	0.92
Pretimed (P) or			A		A	A	A	\vdash	A	A		A		A	A	A	A	1
Start-up Lost Tin			2.0		2.0	 	2.0	\dashv	2.0	+~		2.0	一十	2.0	 	2.0	2.0	
Extension of Effe			2.0	-+-	2.0	 	2.0		2.0			2.0	一十	2.0	 	2.0	2.0	+
Arrival Type, AT			3	+	3	 	3	-	3	+-		3		3		3	3	+
Unit Extension,			3.0	+	3.0	╁	3.0		3.0	+-		3.0		3.0	 	3.0	3.0	<u> </u>
Filtering/Meterin			1.000		1.000	┼	1.000	,	1.000	\dashv		1.00	20	1.000	 	1.000	1.000	+=
Initial Unmet De			0.0		0.0	\vdash	0.0	-	0.0	+-		0.0	~ +	0.0	 	0.0	0.0	
Ped / Bike / RTC			0.0	+	0	60	0.0		0.0	10		0.0		0	0	0.0	0.0	0
Lane Width	V VOIDITIES		12.0	+,	12.0	50	12.0	-	12.0	┪		12.0		12.0	1-	12.0	12.0	1 :
Parking / Grade	/ Parking		N N	+	0	l _N	N N	-	0	- N		N		0	l _N	N N	0	N
Parking Maneuv			+-*-	+		 ^ -	- '\		<u> </u>	- -~		1			 ~~	+~-	+	+~
Buses Stopping,			10	+	0	 	0		0	╅┈		0		0	╂	- 0	10	+
Min. Time for Pe			+ -		3.2	——	- 		3.2			 		3.2	<u> </u>	- 	3.2	
·		Tin	<u> </u>				0.		J.2	NC	<u> </u>				,-	07		08 🗂
Phasing	EW Perm	-	/B Only	-	03)	G ≈	4			Perm			06	-			<u>~</u>
Timing	G = 37.2 $Y = 4$	Y =	7.0		G = Y =		Y =			G = 2 Y = 4			G =		G= Y=		G = Y =	
D. Carlo SAcol		17 =	4	\dashv	7 =		113			1 - 4							11 =	E i
Duration of Anal			41.00	<u></u>									Cycle	Lengui	, C = 8	1.2 		
Lane Group Ca	pacity, Control D	eiay, a	ana LUS	<i>υ</i> еτе Ε		on		-	WB		\neg			VB		~	SB	
		ŀ	LT '	Th		RT	LT		TH	RT	-	LT		TH	RT	LT	T TH	1
Adjusted Flow R	ate, v		7	124	1 1		215	1	245			95		53		9	66	
Lane Group Car	pacity, c		118	162	27		338	2	147			418		504		423	578	
v/c Ratio, X			0.06	0.78	5		0.64	O.	.58		7).23	O.	11		0.02	0.11	
Total Green Rat	io, g/C		0.46	0.48	3		0.59	0.	.59		7	0.31	0.	31		0.31	0.31	1
Uniform Delay, o			12.3	18.3	;		27.8	10	0.2		12	20.9	20	0.1		19.6	20.2	
Progression Fac			1.000	1.00	00		1.000	1.	.000		1	1.000	_	.000		1.000	1.000	100
Delay Calibratio		_	0.11	0.31	1		0.22	0.	.17		7).11	0.	.11		0.11	0.11	1
Incremental Del			0.2	2.:			3.9	+	0.4			0.3		0.1		0.0	0.1	Li
Initial Queue De		- 	0.0	0.0			0.0	+	0.0		十	0.0		0.0		0.0	0.0	1
Control Delay	· · ·	$\neg +$	12.5	20.			31.8	₩	10.6		-	21.2		20.2	 	19.6	20.2	
Lane Group LOS	S	-	В	C	-		C		В	\vdash	十	C	-+-	C		В	C	+==
Approach Delay		-+	20.		<u>L</u>			3.7		<u> </u>	十	-	20.8		L	 	20.2	
Approach LOS		-+	C					B			\dashv		C C				C	£]
Intersection Del			17.				X _c =	_	6			nterse		OS			В	<u> </u>
J	ersity of Florida. All Righ	ts Reco		<u>·</u>			,,,			HCC		reion 5.2					nerated: 11/8/	72006 5:16

BACK-OF-QUEUE WORKSHEET aneral Information Project Description Williams Field Road at Cooley Loop West AM Pk Hr-2025 rerage Back of Queue WB EB NB SB LT TH RT LT TH RT LT TH RT LT TH RT ne Group L TR Ł, TR L TR L TR tial Queue/Lane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 w Rate/Lane Group 7 1241 215 1245 9 95 53 66 atflow/Lane 257 1865 569 1899 1357 1637 1373 1878 pacity/Lane Group 118 1627 338 2147 418 504 423 578 ow Ratio 0.0 0.3 0.4 0.3 0.1 0.0 0.0 0.0 0.06 0.76 0.64 0.58 0.23 0.11 0.02 0.11 Ratio 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 actor 3 3 3 3 3 3 3 3 ival Type fatoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 `Factor 1.00 1.00 1.00 0.1 12.2 2.2 0.9 0.1 9.1 1.6 1.1 0.2 0.6 0.3 0.7 0.4 0.4 0.4 0.5 0.0 1.8 0.6 0.9 0.1 0.1 0.1 0.0 Average 14.0 2.7 10.1 1.7 0.9 1.1 procentile Back of Queue (95th percentile) 2.1 1.8 2.0 1.8 2.0 2.1 2.1 2.1 ck of Queue 0.2 24.9 5.5 18.6 3.5 0.3 1.9 2.3 ueue Storage Ratio eue Spacing 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0

0

0

vright © 2005 University of Florida, All Rights Reserved

erage Queue Storage Ratio

% Queue Storage Ratio

0

0

⊋µeue Storage

HCS+™ Version 5.2

0

0

Generated: 11/8/2006 5:16 AN

0

0

11/8/2006																			FT
·····						HCS+	DETAIL	ED	REP	ORT									
General Informa	ntion							S	Site Inf	orma	ation								
Analyst	MG							1	ntersec					//Cooley	Loop	west			Ţ.TI
Agency or Co.	TASK Eng							1	Area Ty	pe		All ot	ner are	eas					_
Date Performed	8/8/2006							Ja	Jurisdic	tion		Gilbe	rt						-
Time Period								A	Analysis	s Yea	ar								
								F	roject.	ID				eld Road k Hr-202:		cooley	Loop		
Volume and Tin	ing Input																		110
					EB				WB					NB				SB	
			LT	\perp	TH	RT	LT		TH	\bot	RT	LT		TH	F	RT	LT	TH	RT
Number of Lanes	s, N1		1		2	0	1		2		0	1		1	0)	1	1	
Lane Group			L	17	TR	<u> </u>	L		TR	\perp		L		TR	乚		L	TR	
Volume, V (vph)			24	1	1190	46	71		1672	\perp	14	18.	2	24	2	18	8	8	氲
% Heavy Vehicle	s, %HV		0		0	0	0		0		0	0		0	0)	0_	0	717.0
Peak-Hour Facto	r, PHF		0.92	0	.92	0.92	0.92		0.92		0.92	0.92	2	0.92	0.9	2	0.92	0.92	0.92
Pretimed (P) or A	Actuated (A)		Α		Α	Α	Α		Α		Α	Α	[Α	Α		A	Α	A EE
Start-up Lost Tim	ne, l1		2.0	2	2.0		2.0		2.0			2.0		2.0			2.0	2.0	
Extension of Effe	ctive Green, e		2.0		2.0		2.0		2.0			2.0		2.0			2.0	2.0	
Arrival Type, AT			3		3		3		3	\perp		3		3			3	3	181
Unit Extension, L	JE		3.0	3	3.0		3.0		3.0			3.0		3.0			3.0	3.0	
Filtering/Metering	g, l		1.000		1.000		1.000)	1.000			1.00	20	1.000			1.000	1.000	
Initial Unmet Der	nańd, Qь		0.0	(0.0		0.0		0.0			0.0		0.0			0.0	0.0	
Ped / Bike / RTO	R Volumes		0		0	0	0		0		0	0		0	4	0	0	0	0
Lane Width			12.0	1	2.0		12.0		12.0			12.0)	12.0			12.0	12.0	THE
Parking / Grade /	Parking		N		0	N	N		0		N	N		0	٨	<u> </u>	N	0	Ň
Parking Maneuve	ers, Nm																		
Buses Stopping,	NB		0		0		0		0			0		0			0	0	1
Min. Time for Per	destrians, G _p				3.2				3.2					3.2				3 .2	
Phasing	EW Perm	W	/B Only	T	03	3	0	4		N	IS Perr	n		06			07	(08
	G = 37.2	G=	7.0	- 1	G =		G=			G=	= 25.0		G =			G=		G =	
Timing	Y = 4	Y =	4	1	Y =		Υ=			Υ=	4		Y =			Y =		Y =	
Duration of Analy	/sis, T = 0.25	•••											Cycle	e Length,	C =	81.2	?		13:
Lane Group Cap	pacity, Control D	elay, a	and LOS	Detei	rminati	on													
		Ļ		E		D.T.	1.7	_	WB					NB			1,7	SB	1
Adjusted Flow R	ata v	\dashv	LT	TH		RT	_LT 	+	TH		T	LT		TH	R	<u> </u>	LT 9	14	110
Lane Group Cap			26 93	134 164			338	+-	832 145	├		198 438		219 508			308	554	+
v/c Ratio, X	acity, c						0.23	+		╀					-			0.03	TE:
Total Green Rati	/C	_	0.28	0.81				╌	.85	├		0.45	-	.43			0.03	0.03	 -
		-+	0.46	0.46			0.59	+	.59	├-	 +	0.31		.31			0.31	19.6	
Uniform Delay, d			13.7	19.0			23.3	+	3.6	┞─		22.6		2.4			19.6		EH.
Progression Fac			1.000	1.00			1.000	+	.000	-		1.000		.000			1.000	1.000	+=
Delay Calibration			0.11	0.36	_		0.11	-	.39	}- -		0.11		0.11			0.11	0.11	+==
Incremental Dela			1.6	3.3			0.3	+-	3.6	╀		0.7	_	0.6			0.0	0.0	<u>II</u>
Initial Queue Del	ay, 0 ₃		0.0	0.0			0.0	+	0.0	⊢		0.0		0.0	ļ		0.0	4	+
Control Delay			15.3	22.	3		23.6	+	17.2	 		23.3		23.0			19.7	19.6	+6
Lane Group LOS) 		В	С	l.,		C		В	<u> </u>		<u> </u>		С	L		В	10.6	
Approach Delay			22.					7.5					23.2				 	19.6	
Approach LOS	_		<u>C</u>					B					C				 	<u>B</u>	<u> </u>
Intersection Dela			19.	9			X _c =	0.7	2			Interse		LOS			ــِـــــــــــــــــــــــــــــــــــ	B	DODE 5:4
Copyright © 2005 Unive	ersity of Florida, All Righ	ts Rese	rved							H	CS+™ V	ersion 5.2	2				Ger	erated: 11/8	∠UUG 5:1

Jeneral Information

Project Description Williams Field Road at Cooley Loop West PM Pk Hr-2025

verage Back of Queue

LT L	EB TH	RT		WB			NB			SB	
+	TH	i nr					IVU		<u> </u>	OD.	
L		KI.	LT	TH	RT	LT	TH	RT	LT	TH	RT
	TR		L	TR		L	TR		L	TR	
0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
26	1343		77	1832		198	219		9	14	
204	1889		569	1897		1422	1649		1002	1798	
93	1648		338	2145		438	508		308	554	
0.1	0.4		0.1	0.5		0.1	0.1		0.0	0.0	
0.28	0.81		0.23	0.85		0.45	0.43		0.03	0.03	
1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
3	3		3	3		3	3		3	3	
1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
0.4	13.8		0.7	17.9		3.6	3.9		0.1	0.2	
0.2	0.6		0.3	0.7		0.4	0.4		0.3	0.5	
0.1	2.3		0.1	3.5		0.3	0.3		0.0	0.0	
0.4	16.1		0.8	21.4		3.9	4.3		0.2	0.2	
centile)											
2.1	1.7		2.1	1.7		2.0	2.0		2.1	2.1	
0.9	28.1		1.7	36.0		7.8	8.4		0.3	0.5	
25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
0	0		0	0		0	0		0	0	
		<u> </u>									
	0.0 26 204 93 0.1 0.28 1.000 3 1.00 1.00 0.4 0.2 0.1 0.4 Centile) 2.1 0.9	0.0 0.0 26 1343 204 1889 93 1648 0.1 0.4 0.28 0.81 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 0.4 13.8 0.2 0.6 0.1 2.3 0.4 16.1 centile) 2.1 1.7 0.9 28.1	0.0 0.0 26 1343 204 1889 93 1648 0.1 0.4 0.28 0.81 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 0.4 13.8 0.2 0.6 0.1 2.3 0.4 16.1 Centile) 2.1 1.7 0.9 28.1	0.0 0.0 0.0 26 1343 77 204 1889 569 93 1648 338 0.1 0.4 0.1 0.28 0.81 0.23 1.000 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 0.4 13.8 0.7 0.2 0.6 0.3 0.1 2.3 0.1 0.4 16.1 0.8 **Centile** 2.1 1.7 2.1 0.9 28.1 1.7	0.0 0.0 0.0 0.0 26 1343 77 1832 204 1889 569 1897 93 1648 338 2145 0.1 0.4 0.1 0.5 0.28 0.81 0.23 0.85 1.000 1.000 1.000 1.000 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.4 13.8 0.7 17.9 0.2 0.6 0.3 0.7 0.1 2.3 0.1 3.5 0.4 16.1 0.8 21.4	0.0 0.0 0.0 0.0 26 1343 77 1832 204 1889 569 1897 93 1648 338 2145 0.1 0.4 0.1 0.5 0.28 0.81 0.23 0.85 1.000 1.000 1.000 1.000 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.4 13.8 0.7 17.9 0.2 0.6 0.3 0.7 0.1 2.3 0.1 3.5 0.4 16.1 0.8 21.4 reentile) 2.1 1.7 2.1 1.7 0.9 28.1 1.7 36.0	0.0 0.0 0.0 0.0 0.0 26 1343 77 1832 198 204 1889 569 1897 1422 93 1648 338 2145 438 0.1 0.4 0.1 0.5 0.1 0.28 0.81 0.23 0.85 0.45 1.000 1.000 1.000 1.000 1.000 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.4 13.8 0.7 17.9 3.6 0.2 0.6 0.3 0.7 0.4 0.1 2.3 0.1 3.5 0.3 0.4 16.1 0.8 21.4 3.9 **Centile** 2.1 1.7 2.1 1.7 2.0 0.9 28.1 1.7 36.0 7.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 1343 77 1832 198 219 204 1889 569 1897 1422 1649 93 1648 338 2145 438 508 0.1 0.4 0.1 0.5 0.1 0.1 0.28 0.81 0.23 0.85 0.45 0.43 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 1343 77 1832 198 219 204 1889 569 1897 1422 1649 93 1648 338 2145 438 508 0.1 0.4 0.1 0.5 0.1 0.1 0.28 0.81 0.23 0.85 0.45 0.43 1.000 1.000 1.000 1.000 1.000 1.000 3 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26 1343 77 1832 198 219 9 204 1889 569 1897 1422 1649 1002 93 1648 338 2145 438 508 308 0.1 0.4 0.1 0.5 0.1 0.1 0.0 0.28 0.81 0.23 0.85 0.45 0.43 0.03 1.000 1.	0.0 1.798 93 1.648 338 2145 438 508 308 554 0.1 0.1 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

onyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:17 AV

HCS+" DETAILED REPORT Site Information neral Information Intersection Williams Field Rd at Recker Rd ilyst Агеа Туре All other areas Agency or Co. TASK Eng Jurisdiction Gilbert Parte Performed 8/8/2006 Analysis Year ne Period Williams Field Road at Recker Road Project ID AM Pk Hr-2025 lume and Timing Input EB WB NB SB LT TH TH TH RT LT RT LT RT LT TH RT C. mber of Lanes, N₁ 1 2 0 2 1 1 1 2 0 1 2 L TR L T R L TR ne Group L TR Volume, V (vph) 6 959 91 106 1131 94 78 865 191 89 817 70 Heavy Vehicles, %HV 0 ō 0 0 0 0 0 0 0 n 0 ak-Hour Factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Pretimed (P) or Actuated (A) Α Α Α Α Α Α Α Α Α Α Α A 2.0 2.0 2.0 art-up Lost Time, Is 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 lension of Effective Green, e 2.0 2.0 3 3 3 3 3 3 3 3 Arrival Type, AT 3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 it Extension, UE 3.0 3.0 ering/Metering, I 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Initial Unmet Demand, Qu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 d / Bike / RTOR Volumes 0 0 10 10 0 0 0 a 10 0 0 10 ne Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 110 N 0 Ν Ν Parking / Grade / Parking Ν 0 Ν 0 Ν Ν 0 Ñ rking Maneuvers, Nm 10 0 0 0 0 0 ses Stopping, NB 0 0 0 0 3.2 3.2 32 3.2 Min. Time for Pedestrians, Gp asing EW Perm WB Only 03 04 NS Perm Excl. Left 07 08 TI. G = 3.0G = G = 36.4G = 5.4G = 37.2G =G = G = Timing V = 4 Y = 0Y == Y = Y = 4Y = 0Y = Y = ration of Analysis, T = 0.25 Cycle Length, C = 90.0 Em ne Group Capacity, Control Delay, and LOS Determination WB NB SB RT LT TH RT LT TH RT LT i n LT TH justed Flow Rate, v 7 1130 115 1229 85 1137 962 91 97 84 1478 224 1777 286 ane Group Capacity, c 793 1425 274 1446 (H) v/c Ratio, X 0.08 0.76 0.51 0.69 0.11 0.30 0.80 0.35 0.67 tal Green Ratio, q/C 0.41 0.49 0.51 0.41 0.49 0.49 0.40 0.51 0.40 27.7 16.0 17.6 21.8 Jñiform Delay, d₁ 22.6 34.3 12.3 23.6 31.8 ĹΗ Progression Factor, PF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 lay Calibration, k 0.11 0.32 0.12 0.26 0.11 0.11 0.11 0.24 0.34 incremental Delay, d₂ 0.4 2.4 2.0 1.2 0.1 0.6 3.3 0.8 1.2 Initial Queue Delay, d₃ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 introl Delay 16.5 25.1 36.3 18.8 12.4 28.3 26.9 32.6 23.0 DU ane Group LOS В C D В В C C C C pproach Delay 25.0 19.8 27.0 23.9 C proach LOS C C IJ, $X_c = 0.84$ ntersection Delay 23.7 Intersection LOS C copyright © 2005 University of Florida, All Rights Reserved Generated: 11/8/2006 5:20 At HCS+™ Version 5.2

General Information

BACK-OF-QUEUE WORKSHEET

roject Description	Williams Field Road at Recker Road AM Pk Hr-2025
--------------------	--

verage Back of Queue		EB		1	WB		T	NB		τ	CD	
1	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	SB	RT
ane Group	L	TR		L	т	R	L	TR		L	TR	
itial Queue/Lane	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
ow Rate/Lane Group	7	1130		115	1229	91	85	1137		97	962	
atflow/Lane	204	1877		458	1900	1615	562	1850		537	1878	
apacity/Lane Group	84	1478		224	1777	793	286	1425		274	1446	
ow Ratio	0.0	0.3		0.3	0.3	0.1	0.2	0.3		0.2	0.3	
c Ratio	0.08	0.76		0.51	0.69	0.11	0.30	0.80		0.35	0.67	
Factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000		1.000	1.000	
тival Type	3	3		3	3	3	3	3		3	3	
atoon Ratio	1.00	1.00	,	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
ή	0.1	12.7		1.5	12.4	1.2	1.1	13.1		1.2	10.3	
۲	0.2	0.6		0.3	0.7	0.6	0.3	0.6		0.3	0.6	Π
ż	0.0	1.8		0.3	1.4	0.1	0.1	2.1		0.2	1.1	
-Average	0.1	14.5		1.8	13.8	1.3	1.2	15.2		1.4	11.4	
ercentile Back of Queue (95th	percentile)						<u> </u>	!	/	 -		·
·%	2.1	1.8		2.0	1.8	2.1	2.1	1.8		2.1	1.8	
ck of Queue	0.3	25.6		3.7	24.6	2.7	2.5	26.7		2.9	20.7	
ueue Storage Ratio		-										
eue Spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0	0	0	0		0	0	
erage Queue Storage Ratio												
ρ% Queue Storage Ratio												

भूगंght © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:20 AN

					HCS+	DE	TAILE									
eral Informati								Intersec	ormation	Millio	ms Field Rd a	Rei	ker Ro			
iiulyst	MG						1	Area Ty			her areas	1100	MEI MU	•		
gency or Co.	TASK Eng						- 1	Jurisdict		Gilbe						
∋ Performed	8/8/2006						,	Analysis		0,,20	•					5
e Period							1	•		Willia	ms Field Road	i at F	Recker	Road		— ,
								Project !	טו	PM P	k Hr-2025					
ume and Tim	ing Input															
		<u>_</u>		EB	T			WB	T ==		NB	Τ.		L	SB	T
			LT	TH	RT	4	LT	TH	RT	LT		4-	RT	LT	TH	뽄
nber of Lanes	s, N1		1	2	0	-	1	2	1	1	2	1		1	2	
ene Group				TR	<u> </u>	_	L	T	R	L	TR	+		L	TR	
olume, V (vph)			21	1384	111	4	185	1600	376	67		┽—	23	124	1158	1
Heavy Vehicles			0	0	0	4	0	0	0	0	0	1-		0	0	+
eak-Hour Factor		!	0.92	0.92	0.92		0.92	0.92	0.92	0.92		0.1		0.92	0.92	0.92
retimed (P) or A			A	A	A	_	Α	A	A	A	A	1	1	A	A	恒
art-up Lost Time			2.0	2.0		4	2.0	2.0	2.0	2.0	2.0	1		2.0	2.0	1_
tension of Effe	ctive Green, e		2.0	2.0	<u> </u>	4	2.0	2.0	2.0	2.0	2.0	1_		2.0	2.0	<u> </u>
rrival Type, AT			3	3	ļ	_	3	3	3	3	3	\bot		3	3	
iit Extension, U	涯		3.0	3.0		_	3.0	3.0	3.0	3.0		1_		3.0	3.0	
ntering/Metering			1.000	1.000		_	1.000	1.000				1		1.000	1.000	<u>_</u>
nitial Unmet Dem			0.0	0.0	1		0.0	0.0	0.0	0.0		1		0.0	0.0	<u> </u>
d / Bike / RTO	R Volumes		0	0	60		0	0	80	0	0	4	0	0	0	10
ane Width			12.0	12.0	<u> </u>		12.0	12.0	12.0	12.0	12.0	_		12.0	12.0	
arking / Grade /	/ Parking		N	0	N		N	0	N	N	0		V	N	0	N
irking Maneuve	ers, Nm			<u> </u>		_		1				1			<u> </u>	<u>L</u> .
ouses Stopping,	Nв		0	0	<u> </u>	_	0	0	0	. 0		丄		0	0	
in. Time for Ped	destrians, G _p			3.2				3.2			3.2			<u> </u>	3.2	·
nasing	EW Perm	WBC	Only	03	3		04		NS Per	m	Excl. Left			07	(08
-	G = 38.6	G = 5.0)	G =			G =		G = 33.3	· · · · ·	G = 5.1		G≔		G=	
iming	Y = 4	Y = 0		Y =			Y =		Y = 4		Y = 0		Y≈		Y =	
uration of Analy	ysis, T = 0.25				-						Cycle Length	ı, C =	= 90.0)		11
ane Group Cap	pacity, Control De	elay, and	LOS De	terminati	оп											
-				EB		L		WB	···		NB	T		 	SB	
e deste D		<u>-</u> -			RT	-	LT	TH	RT	LT	TH	R	.1	LT 425	TH	1
djusted Flow Ra		2.		559		-		1739	322	73	950	-		135	1321	
ane Group Capa	acity, c	8		543		₩-		1914	854	267	1319			267	1329 0.99	
/c Ratio, X	/0	0.2		.01		0.7		0.91	0.38	0.27	0.72			0.51		+==
otal Green Ratio		0.4.		.43		0.8		0.53	0.53	0.47	0.37			0.47	0.37	+-
Jniform Delay, d		16.		5.7		36	-	19.2	12.5	34.2	24.3	┼		33.0	28.3	1
rogression Fact		1.0		.000				1.000	1.000	1.000	1.000	╄-		1.000	1.000	↓ _
elay Calibration		0.1		.50				0.43	0.11	0.11	0.28	 		0.11	0.50	+=
ncremental Dela		1.		25.5		╄	2.0	6.9	0.3	0.6	1.9	↓_		1.6	23.2	— <u>—</u>
nitial Queue Dela	lay, d ₃	0.0		0.0		╄		0.0	0.0	0.0	0.0	╄		0.0	0.0	-
		18	3.4	51.2		14	8.9	26.1	12.8	34.7	26.3	↓_		34.6	51.4	——————————————————————————————————————
				1		L	n [С	В	С	C			С	D	
	3	В		D		_										
ane Group LOS Approach Delay		В	50.7	D			26.2		<u></u>		26.9				49.9	
Control Delay Lane Group LOS Approach Delay Approach LOS		В		D				2			26.9 C				49.9 D	

HCS+" DETAILED REPORT

rringht © 2005 University of Florida, All Rights Reserved

j		BAG	CK-OF-C	OENE N	ORKSH	EET						
eneral Information												
Roject Description Williams Field I	Road at Recker R	Road PM P	k Hr-202	5			•					
verage Back of Queue												
?	<u> </u>	EB	1 5	 	WB	T		NB			SB	·
ane Group	LT	TH TR	RT	LT L	TH T	RT R	LT	TH	RT	LT	TH	RT
itial Queue/Lane	0.0	0.0	 	0.0	0.0		L	TR	ļ	L	TR	
		├	 	 	 	0.0	0.0	0.0	 	0.0	0.0	╀
ow Rate/Lane Group	23	1559	ļ	201	1739	322	73	950		135	1321	
atflow/Lane	197	1889		501	1900	1615	566	1872		566	1886	<u> </u>
pacity/Lane Group	84	1543	ļ	265	1914	854	267	1319	ļ	267	1329	<u> </u>
ow Ratio	0.1	0.4		0.4	0.5	0.2	0.1	0.3		0.2	0.4	<u> </u>
Ratio	0.27	1.01		0.76	0.91	0.38	0.27	0.72		0.51	0.99	
Factor	1.000	1.000		1.000	1.000	1.000	1.000	1.000		1.000	1.000	
ival Type	3	3		3	3	3	3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	1.00	
47	0.4	20.4		2.6	20.7	4.7	1.0	10.7		1.9	17.3	
1	0.2	0.6		0.3	0.7	0.6	0.3	0.6		0.3	0.6	
	0.1	8.4		0.9	4.8	0.4	0.1	1.3		0.3	6.6	
°verage	0.4	28.9		3.4	25.5	5.1	1.1	12.0		2.2	23.9	
centile Back of Queue (95th	percentile)	L	1	 		<u> </u>	l			}	1	<u> </u>
% 1	2.1	1.6		2.0	1.6	2.0	2.1	1.8		2.0	1.7]
c of Queue	0.9	46.8		6.9	42.0	10.0	2.3	21.8		4.5	39.6	
ueue Storage Ratio							-			·		
Je Spacing	25.0	25.0		25.0	25.0	25.0	25.0	25.0		25.0	25.0	
ueue Storage	0	0		o	0	0	0	0		0	0	
age Queue Storage Ratio												
i "Queue Storage Ratio											1	

HCS+™ Version 5.2

Generated: 11/8/2008 5:29 AN

					HCS+	DETAIL	ED RE	PORT						
General Informa	tion						Site Ir	formation						
Analyst	MG						Interse			eld Rd/Cooley	Loop Eas	st		12
Agency or Co.	TASK Eng						Area 1	уре	All of	her areas				
Date Performed	8/8/2006						Jurisd	iction	Gilbe	rt				~
Time Period							Analys	sis Year						
							Projec	tID		ms Field Road		y Loop		
Volume and Tim	ing Inout					7.1 .			East	AM Pk Hr-202	5			
volume and Tim	ing input		T-	EB		- T	WE		- 1	NB				
			LT	TH	RT	LT	TH				Тет	+	SB	T =
									L7		RT	LT	TH	
Number of Lanes	5, N1		1	2	0	1	2		1	1	0	1	1	
ane Group			14	TR			TR		L	TR		L	TR	
/olume, V (vph)			41	1088		61	780	34	15	6 25	180	93	35	1
% Heavy Vehicle	s, %HV		0	0	0	0	0	0	0	0	0	0	0	<u>₹</u>
Peak-Hour Facto	r, PHF		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Pretimed (P) or A	Actuated (A)		A	Α	Α	Α	Α	A	A	Α	Α	Α	A	1
Start-up Lost Tim	ne, l1		2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	T
Extension of Effe	ctive Green, e		2.0	2.0		2.0	2.0		2.0	2.0	1	2.0	2.0	†
Arrival Type, AT			3	3		3	3		3	3		3	3	+[
Jnit Extension, U	JE		3.0	3.0		3.0	3.0	_	3.0		1	3.0	3.0	+=
iltering/Metering			1.000		,	1.000		00	1.00		 	1.000	1.000	+-
			0.0	0.0		0.0	0.0	-	0.0		 	0.0	0.0	+-[
	/Metering, I nmet Demand, Q _b ke / RTOR Volumes		0	0.0	0	0.0	0.0	- _	0.0	0.0	10	0.0	0.0	
ane Width	it volumes		12.0	12.0	 	12.0	12.0				+ -		<u> </u>	10
	Darkina								12.0		1	12.0	12.0	1
Parking / Grade /			N N	0	N	<u>^</u>		N	N	0		N	0	N
Parking Maneuve													 	1-6
Buses Stopping,			0	0		0	0		0		1.	0	0	
Min. Time for Pe	destrians, G _P		<u> </u>	3.2			3.2) 	L	3.2		<u> </u>	3.2	
Phasing	EW Perm		/B Only		03	0	4	NS Pe	em)	06	1	07	(08
Timin a	G = 35.0	G =	5.0	G =		G≃		G = 20.	0	G =	G =		G =	
Timing	Y =	Y =		Υ =		Y =		Y =		Y≃	Y =		Υ≃	
Ouration of Analy	rsis, T = 0.25									Cycle Length	, C = 60	.0		_[
ane Group Cap	acity, Control D	elay, a	and LOS	Determin	ation						<u> </u>			
				EB			WB			NB		.1	SB	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	\Box
djusted Flow Ra	ate, v		45	1 195		66	885		170	223		101	198	<u> </u>
ane Group Cap	acity, c		286	2107		312	2397		302	550		281	557	
/c Ratio, X			0.16	0.57		0.21	0.37		0.56	0.41		0.36	0.36	1
Total Green Ratio	o, g/C		0.58	0.58		0.67	0.67		0.33	0.33		0.33	0.33	T
Jniform Delay, d	1	1	5.7	7.8	l	10.9	4.4	1	16.4	15.4	1	15.1	15.1	T
rogression Fact		\neg	1.000	1.000	 	1.000	1.000	 	1,000	1.000	 	1.000	1.000	+{
Delay Calibration		- 	0.11	0.16		0.11	0.11	 	0.16	0.11	 	0.11	0.11	十
ncremental Dela		\dashv	0.3	0.4	 	0.3	0.1	+	2.4	0.5		0.8	0.4	1
nitial Queue Del		\dashv	0.0	0.0	 	0.0	0.0	-			 	0.0	0.0	┰
	ay, ug				 			 	0.0	0.0				+
Control Delay			6.0	8.1		11.2	4.5	 	18.8	15.9		15.9	15.5	+
ane Group LOS	·		A	A	<u></u>	В	Α		В	В		В	В	
Approach Delay	 		8.				5.0			17.2			15.7	
						ł	Α	· · · · · · · · · · · · · · · · · · ·	1	В		1	В	{
Approach LOS			A			X _c =				<u> </u>				

General Information

roject Description Williams Field Road at Cooley Loop East AM Pk Hr-2025

erage Back of Queue

erage Back of Queue													_
2		EB		<u> </u>	WB			NB			SB	,]
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
e Group	L	TR		L	TR	<u> </u>	L	TR		L	TR	<u></u>	
tial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		
w Rate/Lane Group	45	1195		66	885		170	223		101	198		
atflow/Lane	490	1897		469	1888		906	1650		844	1670]
pacity/Lane Group	286	2107		312	2397		302	550		281	557]
ow Ratio	0.1	0.3		0.1	0.2		0.2	0.1		0.1	0.1]
Ratio	0.16	0.57		0.21	0.37		0.56	0.41		0.36	0.36		
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000		
val Type	3	3		3	3		3	3		3	3]
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
21	0.3	6.5		0.4	3.4		2.3	2.9		1.3	2.5		
	0.3	0.6		0.3	0.6		0.3	0.4		0.3	0.4]
12.	0.0	0.7		0.1	0.4		0.3	0.3		0.1	0.2		
/erage	0.4	7.2		0.4	3.8		2.7	3.1		1.4	2.7		
centile Back of Queue (95th)	percentile)												
ì% ,	2.1	1.9		2.1	2.0		2.0	2.0		2.1	2.0]
≰ of Queue	0.8	13.8		0.9	7.5		5.4	6.3		2.9	5.5		
ueue Storage Ratio													_
ue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0		_
ueue Storage	0	0		0	0		0	0		0	0		_
age Queue Storage Ratio													
No Queue Storage Ratio			<u> </u>						<u> </u>				_

wight © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:30 AN

					ŀ	HCS+	DET		D REP									
neral Informa	ation								Site Inf			104 = 1						
alyst	MG							l l	Intersed Area Ty			W. ⊢ie All oth		d/Cooley	Loop Ea	ısı		jun
gency or Co.	TASK Eng							1	Jurisdic	•		Gilber		cas				
te Performed	8/8/2006							- 1	Analysis		or.	Gilbei						REI
ne Period									•		aı	Willian	ns F	ield Road	at Cool	ev Loop		5.7.
									Project	טו				k Hr-2025		<u> </u>		
Jume and Tin	ing Input		т				т-		14.50					1273			<u> </u>	E
			LT	E		RT	- -,	LT	WB TH		RT	LT		NB TH	RT	LT	SB	T 57
mbas of Lance	N.		1	2		0		1	2	┵	0	1		1	0	1	1	H
mber of Lanes	5, IN1		1	TR		· · ·		<u>' </u>	TR	\dashv		1 '		TR	-	1/2	TR	1=
olume, V (vph)			62	12		68		150	1876		173	94		25	144	80	80	
Heavy Vehicle	e %HV		0	12	70	0		0	0	\dashv	0	0	\dashv	0	0	0	0	
ak-Hour Facto		·	0.92	0.9	, 	0.92		92	0.92	\dashv	0.92	0.92		0.92	0.92	0.92	0.92	0.92
retimed (P) or A			A A	A		A	-	4	A	\dashv	A	A		A	A	A	A A	10.52 Again
art-up Lost Tim			2.0	2.0				.0	2.0	_		2.0	_	2.0	 	2.0	2.0	+-25
tension of Effe		·	2.0	2.0		 -		.0	2.0	7		2.0		2.0		2.0	2.0	+-
rrival Type, AT	,		3	3				3	3	7		3		3	<u> </u>	3	3	1 5
it Extension, U	JE		3.0	3.0			3.		3.0	7		3.0		3.0		3.0	3.0	
tering/Metering			1.000	1.0				.000	1.000	, †		1.00	o	1.000		1.000	1.000	T
itial Unmet Der			0.0	0.0	,		0.	.0	0.0	\neg		0.0		0.0		0.0	0.0	1 2
d / Bike / RTC	R Volumes		0	0		0		0	0	_	0	0		0	0	0	0	0
ne Width			12.0	12.	2		12	2.0	12.0			12.0		12.0		12.0	12.0	10
arking / Grade	Parking		N	0		N	1	V	0	\neg	N	N		0	N	N	0	N
irking Maneuv	ers, Nm								1	\neg		7						ىئىن:
ises Stopping,	Nв		0	0			(0	0	\Box		0		0		0	0	10
lin. Time for Pe	destrians, Gp			3.	2				3.2					3.2			3.2	
nasing	EW Perm	WE	Only		03			04		1	VS Pem	1		06		07		80
ii-a	G = 35.0	G = 8	5.0	G	=		G=	=		G=	= 20.0		G =		G:		G =	
iming	Y =	Y =		Υ:	=		Y =	:		Υ =	=		Y =		Υ=	:	Y =	
uration of Analy											_		Сус	le Length,	C = 6	0.0		I II
ne Group Ca	oacity, Control D	elay, an	id LOS		inatic	on												
		⊢	LT [EB TH		RT	LT		TH	1 6	रा	LT		NB TH	RT	LT	SB TH	T de m
ijusted Flow R	ate. v		67	1431	+-		163		2227	۲,	`	102	╅	184	N.	87	167	+
ane Group Cap			127	2094	+		277		2381	\vdash		328	-+-	552		314	588	+-
(c Ratio, X			.53	0.68	_		0.59		0.94	╈		0.31	—┝~	0.33	 -	0.28	0.28	1 0
tal Green Rati	o, g/C		.58	0.58	十		0.67		0.67	T		0.33	-+-	2.33		0.33	0.33	† <i>-</i>
niform Delay, d			7.5	8.7	十		18.6		8.9	T		14.9	—-	15.0		14.7	14.7	1
rogression Fac		1	.000	1.000	一		1.00	0 1	1.000			1.000		1.000		1.000	1.000	7 =
elay Calibration	n, k	0	.13	0.25	1		0.18	1).45	Γ		0.11	7	0.11		0.11	0.11	
cremental Dela	ay, d ₂		4.1	0.9			3.3		7.8			0.5	1	0.4		0.5	0.3	1
itial Queue De	lay, d ₃	- (0.0	0.0			0.0		0.0	Π		0.0	1	0.0		0.0	0.0	
ontrol Delay			11.6	9.6	_		21.9		16.6	Γ		15.4	1	15.4		15.2	15.0	
ane Group LOS	3		В	Α			С		В	Γ		В	T	В		В	В	
pproach Delay			9.7	,				17.0)			_	15.4				15.1	
pproach LOS			Α					В					В				- B	
pproach LOS									73						-			

beneral	Inform	ation

oject Description Williams Field Road at Cooley Loop East PM Pk Hr-2025

erage Back of Queue												
		EB		<u> </u>	WB	.		NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
ne Group	L	TR		L	TR		L	TR		L	TR	
itial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
w Rate/Lane Group	67	1431		163	2227		102	184		87	167	
atflow/Lane	217	1885		416	1876		985	1657		941	1763	
pacity/Lane Group	127	2094		277	2381		328	552		314	588	
ow Ratio	0.3	0.4		0.4	0.6		0.1	0.1		0.1	0.1	
Ratio	0.53	0.68		0.59	0.94		0.31	0.33		0.28	0.28	
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
ival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
ri	0.7	8.7		1.0	17.2		1.3	2.3		1.1	2.0	
	0.2	0.6		0.3	0.6		0.3	0.4		0.3	0.4	
	0.2	1.2		0.3	5.7		0.1	0.2		0.1	0.2	
¹-\verage	0.8	9.9		1.3	23.0		1.4	2.5		1.2	2.2	
prcentile Back of Queue (95th	percentile)	<u> </u>	·	·'	. <u></u>				•	-		·
%	2.1	1.8		2.1	1.7		2.1	2.0		2.1	2.0	
ck of Queue	1.7	18.2		2.7	38.3		2.9	5.0		2.4	4.5	
ueue Storage Ratio												
eue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
erage Queue Storage Ratio												
p% Queue Storage Ratio												

ธักหาight © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:30 AN

HCS+" DETAILED REPORT neral Information Site Information Intersection Williams Field Rd at Access 2 MG 1 alvst Area Type All other areas Agency or Co. TASK Eng Jurisdiction Gilbert ite Performed 8/8/2006 10 Analysis Year ne Period Williams Field Road at Access 2 AM Project ID Pk Hr-2025 olume and Timing Input WB EB NB SB TH LT TH RT TH TH LT RT LT RT LT RT 2 imber of Lanes, N1 2 0 1 1 1 TR L T L R ine Group Volume, V (vph) 1220 108 31 803 78 12 Es. 0 0 0 Heavy Vehicles, %HV 0 0 0 0.92 0.92 0.92 0.92 0.92 0.92 eak-Hour Factor, PHF Pretimed (P) or Actuated (A) A Α A Α Ā A 201 2.0 2.0 2.0 2.0 2.0 lart-up Lost Time, Is xtension of Effective Green, e 2.0 2.0 2.0 2.0 2.0 3 121 3 3 3 3 Arrival Type, AT 3.0 3.0 3.0 3.0 3.0 nit Extension, UE iltering/Metering, I 1.000 1.000 1.000 1.000 1.000 Initial Unmet Demand, Qu 0.0 0.0 0.0 0.0 0.0 ed / Bike / RTOR Volumes 0 0 0 0 0 0 0 0 12.0 12.0 12.0 12.0 12.0 ane Width N N 0 Ν N Ν Parking / Grade / Parking N 0 0 arking Maneuvers, Nm I 0 0 0 0 0 Juses Stopping, Na 3.2 3.2 3.2 Min, Time for Pedestrians, Gp hasing EW Perm 02 03 04 NB Only 06 07 08 G = 20.0G ≈ G = 35.0G = G = G = G = G = Timing Υ× Y = Y = Y = Y = Y = Y = Y ≈ Cycle Length, C = 55.0 Juration of Analysis, T = 0.25 ane Group Capacity, Control Delay, and LOS Determination SB WB ΝB LT TH LT TH RT LT TH RT LT TH Idjusted Flow Rate, v 1443 34 873 85 13 Lane Group Capacity, c 2274 138 2302 656 587 ⊮/c Ratio, X 0.63 0.25 0.38 0.13 0.02 Fotal Green Ratio, g/C 0.64 0.64 0.64 0.36 0.36 6.1 4.3 4.8 11.7 11.2 Uniform Delay, d₁ Progression Factor, PF 1.000 1.000 1.000 1.000 1.000 Delay Calibration, k 0.21 0.11 0.11 0.11 0.11 Incremental Delay, d₂ 0.6 0.9 0.1 0.1 0.0 0.0 0.0 0.0 0.0 Initial Queue Delay, d₃ 0.0 6.7 5.2 4.9 11.8 Control Delay 11.2 Lane Group LOS A В В Α A Approach Delay 6.7 49 11.7 Approach LOS В Α Α Intersection Delay 6.2 $X_{c} = 0.45$ Intersection LOS Α Generated: 11/8/2006 5:30 A Copyright @ 2005 University of Florida, All Rights Reserved HCS+™ Version 5.2 1

eneral Information

reject Description Williams Field Road at Access 2 AM Pk Hr-2025

rage Back of Queue

3		EB		<u> </u>	WB		<u> </u>	NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
e Group		TR		L	T		L		R			
ial Queue/Lane		0.0		0.0	0.0		0.0		0.0			
v Rate/Lane Group		1443		34	873		85		13			
tflow/Lane		1877		217	1900		1805		1615			
acity/Lane Group		2274		138	2302		656		587			
w Ratio		0.4		0.2	0.2		0.0		0.0			
Ratio		0.63		0.25	0.38		0.13		0.02			
actor		1.000		1.000	1.000		1.000		1.000			
val Type		3		3	3		3		3			
atoon Ratio		1.00		1.00	1.00		1.00		1.00			
Factor		1.00		1.00	1.00		1.00		1.00			
		7.0		0.2	3.4		0.9		0.1			
·		0.6		0.2	0.6		0.4		0.4			
~		1.0		0.1	0.3		0.1		0.0			
^verage		8.0		0.3	3.7		0.9		0.1			
rcentile Back of Queue (95th	percentile)			. •	- <u></u>	L						
ń.		1.9		2.1	2.0		2.1		2.1			
k of Queue		15.1		0.6	7.4		1.9		0.3			
ueue Storage Ratio												
eue Spacing		25.0		25.0	25.0		25.0		25.0			
ieue Storage		0		0	0		0		0			
erage Queue Storage Ratio												
% Queue Storage Ratio								1				

muright @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:30 AM

					HCS+	DETAIL	ED REPO									
General Informat	tion							ormation	\AEIEn	mo Fic	eld Rd at	Accors	2			
Analyst	MG						Intersec Area Ty			her are	-	ALLESS	4			10
Agency or Co.	TASK Eng						Jurisdic	•	Gilbe							
Date Performed	8/8/2006						Analysis		Onbe	.11						
Time Period							1 1		Willia	ıms Fie	eld Road	at Acce	ss 2 Pl	И		=
							Project	ID	Pk H	r-2025						
Volume and Tim.	ing Input															
1			L	EB			WB	T			NB	T 57		 -	\$B	·
	·		LT	TH	RT	LT	TH	RT	L	<u> </u>	TH	RT	<u> </u>	<u>'</u>	TH	RT.
Number of Lanes	, N ₁		ļ	2	0	1	2		1			1		\rightarrow		
Lane Group	· · · · · · · · · · · · · · · · · ·		<u> </u>	TR		L	T					R				<u> </u>
Volume, V (vph)			<u> </u>	1143	329	100	1870	_	42	28		76				
% Heavy Vehicles			ļ	0	0	0	0		0			0			- <u></u> -	
Peak-Hour Factor				0.92	0.92	0.92	0.92	_	0.9			0.92				
Pretimed (P) or A			<u> </u>	A	A	A	A		A			A				
Start-up Lost Time	e, lı			2.0		2.0	2.0		2.0			2.0	4			
Extension of Effect	ctive Green, e			2.0		2.0	2.0		2.0			2.0				<u>Ļ</u> ,
Arrival Type, AT				3		3	3		3			3	4_]		
Unit Extension, U	E			3.0		3.0	3.0		3.0			3.0				<u></u>
Filtering/Metering	,1			1.000		1.000	1.000	<u> </u>	1.0	00		1.000				
Initial Unmet Dem	and, Qb			0.0		0.0	0.0		0.0	2		0.0				
Ped / Bike / RTO	R Volumes		0	0	0	0	0		0		0	0				<u> </u>
Lane Width				12.0		12.0	12.0		12.	0		12.0				
Parking / Grade /	Parking		N	0	N	N	0	N	N		0	N				<u> </u>
Parking Maneuve	ers, Nm															<u> </u>
Buses Stopping,	Nв			0		0	0			2		0	_ _		·	<u> </u>
Min. Time for Ped	iestrians, G _P		<u> </u>	3.2			3.2				3.2		L_			
Phasing	EW Perm		02	T	03	0	4	NB O	nly		06		07			8
T::	G = 35.0	G =		G =		G=		G = 20.0	2	G =		G	=		G =	+
Timing	Υ=	Y =		Y =		Y =		Y =		Y =		Υ:			Y =	
Duration of Analy	sis, T = 0.25									Cycl	e Length	, C = 5	5.0			
Lane Group Cap	acity, Control De	lay, aı	nd LOS i		ation				Τ							
		-	1÷ 1	EB.	ŘT	LT	WB TH	RT	LT		NB TH	RT	- -	T	SB TH	Ti
Adjusted Flow Ra	ata v	{-	LT	TH 1600	R1	109	2033	I NI	465			83	- -	'		f
Lane Group Cap				2225	 	138	2302	 	656			587				+
	acity, c	-+-				0.79	0.88		0.71			0.14				+-
v/c Ratio, X Total Green Ratio	n a/C			0.72 0.64	 	0.79	0.64	 	0.71			0.14	\dashv			╁┺
					 	7.3	8.3	 	15.0	-+		11.7	-		 	+=
Uniform Delay, d		 -		6.7	 		1.000	 	1.000	, 		1.000	+		 	+-
Progression Fac				1.000	 	1,000		 		-		0.11			 	+
Delay Calibration		-+		0.28	 	0.34	0.41		0.27	-+		0.11	-+-		 	
Incremental Dela				1.2	 	25.9	4.5	 	3.5	\dashv			-+-		 	1-2-
Initial Queue Del	ay, d ₃			0.0	 -	0.0	0.0	 	0.0			0.0	-		 	+
Control Delay				7.9		33.2	12.8	 	18.6			11.9	-+-			十~
Lane Group LOS				Α	<u> </u>	C	В	ــــــــــــــــــــــــــــــــــــــ	B			В	-∔-		<u> </u>	
Approach Delay			7.9				3.8		 	17.5						
Approach LOS		\perp	A				B		 	В			_}_			_ ;
Intersection Dela	ay		12.	1		\ X _c =	0.82		Inters	ection	LOS				B	

General Information

roject Description Williams Field Road at Access 2 PM Pk Hr-2025

Average Back of Queue				~								
•		EB		<u> </u>	WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group		TR		L	T	<u></u>	L		R			
tial Queue/Lane		0.0		0.0	0.0		0.0		0.0			
rlow Rate/Lane Group		1600		109	2033		465		83			
tflow/Lane		1836		217	1900		1805		1615			
_apacity/Lane Group		2225		138	2302		656		587			
pw Ratio		0.5		0.5	0.6		0.3		0.1			
c Ratio		0.72		0.79	0.88		0.71		0.14			
actor		1.000		1.000	1.000		1.000		1.000			
rrival Type		3		3	3_		3		3			
atoon Ratio		1.00		1.00	1.00		1.00		1.00			
Factor		1.00		1.00	1.00		1.00		1.00			
ii d	İ	8.6		1.2	13.5		6.1		0.9			
		0.6		0.2	0.6		0.4		0.4			
Q2		1.4		0.5	3.6		0.9		0.1			
Average		10.0		1.7	17.1		7.0		0.9			
Percentile Back of Queue (95th p	percentile)									*		
76		1.8		2.0	1.7		1.9		2.1			
ங்ack of Queue		18.4		3.5	29.6		13.4		1.9			
peue Storage Ratio												
ueue Spacing		25.0		25.0	25.0		25.0		25.0			
peue Storage		0		0	0		0		0			
verage Queue Storage Ratio												
Queue Storage Ratio												

yright @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2008 5:31 AM

					HCS+⁻	DETAIL	ED REPO							
General Inform								ormation	14 507	- Figure	4.4			<u>-</u> #1-
Analyst	MG						Intersec			ms Field Rd a	I Access 1			11 1
Agency or Co.	TASK Eng						Area Ty	•		her areas 				
Date Performed	8/8/2006						Jurisdic		Gilbe	π				## E 1 (
Time Period							Analysis	s Year	Millio	ms Field Road	d at Access	1 111		E. I.
							Project	ID		-2025	ai Access	- AW		
Volume and Til	ming Input						/A/D			NB		1	SB	
			LT	EB TH	RT	LT	TH	RT	LT		RT	LT	TH	RT
Number of Lane	es. N ₁		1	1 2	10	1	1 2	0	1	1	0	1	1	٦
Lane Group			1	TR	 	1	778	-		TR	+	L	TR	
Volume, V (vph))		111	1121	5	5	750	3	5		5	2	3	22
% Heavy Vehicle			0	0	0	0	0	0	0	0	10	0	0	6.1.1
Peak-Hour Fact			0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Pretimed (P) or			A	A	A	A	A	A	A	A	A	A	A	£11
Start-up Lost Til			2.0	2.0	 	2.0	2.0		2.0		+	2.0	2.0	1
Extension of Eff			2.0	2.0		2.0	2.0		2.0		+	2.0	2.0	
Arrival Type, AT			3	3		3	3		3	3	 	3	3	Tir
Unit Extension,			3.0	3.0		3.0	3.0		3.0		 	3.0	3.0	
			1.000	1.000	+	1.000			1.00		 	1.000	1.000	
			0.0	0.0		0.0	0.0		0.0		 	0.0	0.0	F. -
	Unmet Demand, Qb / Bike / RTOR Volumes			0.0	10	0.0	0.0	10	100	0.0	0	0	0.0	0
Lane Width	Of Volumes		12.0	12.0	- 	12.0	12.0	+-	12.0		+	12.0	12.0	Fi
Parking / Grade	/ Parking		N	10	l N	N N	0	l _N	N N	0	N	N	0	N -
Parking Maneuv			+	+	+		- - -		- ::	- -	 ~ -	 	 	+
Buses Stopping			10	10		0	10	 -			 	0	0	
Min. Time for Po			 	3.2		+	3.2		+-	3.2		 	3.2	1
Phasing	EW Perm	F	3 Only		03	1 0	. حصوص	NS Per		06		07		8 = 1
Thasing	G = 25.0		10.0	G=		G=		G = 20.0		G=	G =		G=	
Timing	Y =	Y =	75.0	Y =		Y		Y =		Y =			Y =	
Duration of Ana				- -				1:		Cycle Length)		t i
	apacity, Control D	elav. a	nd LOS E)etermini	ation				=	Cycle Conga	., 0 00.			
22.70 0.70 2		,,		EB			WB			NB			SB	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	
Adjusted Flow F			121	1223		5	818		5	10		2	93	
Lane Group Ca	pacity, c		513	1643		138	1644		436	639	<u> </u>	514	591	┷-
v/c Ratio, X		(0.24	0.74		0.04	0.50	1	0.01	0.02	L	0.00	0.16	
Total Green Ra	tio, g/C	(0.64	0.45		0.45	0.45		0.36	0.36	<u> </u>	0.36	0.36	
Uniform Delay,			9.7	12.4		8.3	10.6		11.2	11.2	<u> </u>	11.2	11.8	<u></u>
Progression Fa			1.000	1.000		1.000	1.000		1.000	1.000	<u> </u>	1.000	1.000	
Delay Calibration	on, k	(0.11	0.30		0.11	0.11		0.11	0.11	<u> </u>	0.11	0.11	
Incremental De		\bot	0.2	1.9		0.1	0.2		0.0	0.0		0.0	0.1	1
Initial Queue De	elay, d ₃		0.0	0.0		0.0	0.0	<u> </u>	0.0	0.0		0.0	0.0	1
Control Delay			9.9	14.3		8.4	10.8	<u> </u>	11.2	11.2	<u> </u>	11.2	11.9	<u>_</u> _
Lane Group LO	S		Α	В		Α	В		В	В	<u> </u>	В	В	خل
Approach Delay			13.9)		10	0.8			11.2			11.9	
Approach LOS			В				В			В			В	
Intersection De	lay	\Box	12.7	7		X _c ≈	0.40		Interse	ection LOS			В	
Capyright © 2005 Uni	versity of Florida, All Righ	ts Reser	ved					HCS+™ `	Version 5.	2		Ger	nerated: 11/8/	2006 5

Jeneral Information

Project Description Williams Field Road at Access 1 AM Pk Hr-2025

verage Back of Queue

verage Back of Queue												
		EB		<u> </u>	WB			NB			SB	
FEFE	LT	TH	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT
ine Group	L	TR		L	TR		L	TR		L	TR	
In tial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
ow Rate/Lane Group	121	1223		5	818		5	10		2	93	
tflow/Lane	806	1898		304	1899		1198	1758		1413	1624	
apacity/Lane Group	513	1643		138	1644		436	639		514	591	
ow Ratio	0.2	0.3		0.0	0.2		0.0	0.0		0.0	0.1	
c Ratio	0.24	0.74		0.04	0.50		0.01	0.02		0.00	0.16	
Factor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
rrival Type	3	3		3	3		3	3		3	3	
i atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Twi	0.7	8.1		0.0	4.6		0.0	0.1		0.0	1.0	
,]	0.3	0.5		0.2	0.5		0.3	0.4		0.3	0.4	
_2	0.1	1.3		0.0	0.5		0.0	0.0		0.0	0.1	
Average	0.8	9.4		0.0	5.1		0.1	0.1		0.0	1.0	
ercentile Back of Queue (95th p	percentile)		<u> </u>						***************************************	<u> </u>	J	·
; FP 6	2.1	1.9		2.1	2.0		2.1	2.1		2.1	2.1	
ack of Queue	1.7	17.4		0.1	9.9		0.1	0.2		0.0	2.1	
ueue Storage Ratio												
ueue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		О	0		0	0		0	0	
verage Queue Storage Ratio												
ழ்% Queue Storage Ratio]							

Copyright @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:32 AN

					HCS+	· DE	TAILE									
neral Inform								Intersec	ormation		iams	Field Rd at	Access	1		<u></u>
alyst	MG						- 1	Area Ty				rieio no at areas	ALLESS	,		F
Agency or Co.	TASK Eng							Jurisdict	•	Gilb		4,000				
te Performed ne Period	8/8/2006							Analysis		0,,,,	0,1					
ie Feliou							1	Project			iams Hr-20	Field Road 25	l at Acce	ss 1 PM		
lume and Ti	ming Input										_					
				EB				WB		\perp		NB			SB	
			LT	TH	RT		LT	TH	RT	l	т.	TH	RT	LT	TH	RI
mber of Lane	es, Nı		1	2	0		1	2	0	1	!	1	0	1	1	
ne Group			L	TR			L	TR		L	•	TR		L	TR	
/olume, V (vph)	_	370	849	5		5	1517	8		5	5	5	8	37	1
Heavy Vehic	les, %HV	_	0	0	0		0	0	0	()	0	0	0	0	TF
ak-Hour Fac			0.92	0.92	0.92		0.92	0.92	0.92	0.9	92	0.92	0.92	0.92	0.92	0.92
retimed (P) or	Actuated (A)		A	Α	A		A	A	A	A	l	Α	Α	Α	Α	/=0
art-up Lost Ti	me, lı		2.0	2.0			2.0	2.0		2.	0	2.0		2.0	2.0	
tension of Ef	fective Green, e		2.0	2.0			2.0	2.0		2.	0	2.0		2.0	2.0	
Arrival Type, A	Г		3	3			3	3		3	}	3		3	3	
hit Extension,	UE		3.0	3.0			3.0	3.0		3.	0	3.0		3.0	3.0	
tering/Meteri	ng, I		1.000	1.000			1.000	1.000		1.	000	1.000		1.000	1.000	_E
nitial Unmet De	emand, Qь		0.0	0.0		0.0		0.0		0.	0	0.0		0.0	0.0	
d / Bike / RT	OR Volumes		0	0	0		0	0	0	- (7	0	0	0	0	0
ne Width			12.0	12.0			12.0	12.0		12	.0	12.0		12.0	12.0	
Parking / Grade	/ Parking		N	0	N		N	0	N	٨	I	0	N	N	0	N
irking Maneu	vers, Nm					T										
uses Stopping	ј, Nв		0	0			0	0			0	0		0	0	
/lin. Time for P	edestrian s, G _P		3.2					3.2				3.2			3.2	
nasing	EW Perm	EB	B Only 0		03	T	04		NS P	em	T	06		07	(08 🗔
·	G = 25.0	G ≈ 1	10.0	G≔		G) =		G = 20	0	G	=	G=		G =	
Timing	Y =	Y =		Y=		Y	′ =		Y =		Y	=	Υ =	:	Y =	
ration of Ana	alysis, T = 0.25										Су	cie Length	, C ≈ <i>5</i> 8	5.0		1
ane Group C	apacity, Control D	elay, an	d LOS		ation	,		VVD.				VD.			00	
			LT	EB TH	RT	L	т Т	TH	RT	LT		NB TH	RT	LT	SB TH	TE
tjusted Flow	Rate, v		102	928		_		1658	 ```	5		10		9	532	1
ane Group Ca			466	1643		-		1643		138		639		514	595	—
∕c Ratio, X			86	0.56		0.0		1.01		0.04		0.02		0.02	0.89	
tal Green Ra	ntio, g/C	0.	64	0.45		0.4	5 0	0.45		0.36		0.36		0.36	0.36	
Jniform Delay,			9.5	11.0	<u> </u>	8.3		5.0	 	11.3		11.2		11.2	16.5	
rogression Fa			.000	1.000		-		1.000		1.000	,	1.000		1.000	1.000	12
elay Calibration			39	0.16		0.1		0.50		0.11		0.11	<u> </u>	0.11	0.42	
ncremental De			15.3	0.5		-	_	24.5		0.1		0.0		0.0	16.0	
nitial Queue D			0.0	0.0		0.0		0.0	 	0.0	-	0.0		0.0	0.0	
1						₩		39.5	†	11.4	-	11.2		11.2	32.5	 _
ontrol Delay			34.8 11.5			┿			 	В		В		В	C	
	DS .		C B A									_	r	, -		
ane Group LC						╁			<u></u>	+	11	3			32.1	
ontrol Delay Lane Group LC Approach Dela oproach LOS	у		C 18. B	5			39.4 D				11. B				32.1 C	-i

General Information

Soject Description Williams Field Road at Access 1 PM Pk Hr-2025

-276	Rack	of (Queue

Average Back of Queue				,								
-	ļ	EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	ТН	RT	LT	TH	RT
Lane Group	L	TR		L	TR		L	TR		L	TR	
tial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Flow Rate/Lane Group	402	928		5	1658		5	10		9	532	
atflow/Lane	733	1898		325	1898		380	1758		1413	1636	
Capacity/Lane Group	466	1643		148	1643		138	639		514	595	
ow Ratio	0.5	0.3		0.0	0.5		0.0	0.0		0.0	0.3	
v/c Ratio	0.86	0.56		0.03	1.01		0.04	0.02		0.02	0.89	
⊋actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Arrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
77	2.6	<i>5</i> .5	}	0.0	13.3		0.0	0.1		0.1	7.7	
រតាំ	0.3	0.5		0.2	0.5		0.2	0.4		0.3	0.4	
10 10 10 10	1.7	0.6		0.0	7.7		0.0	0.0		0.0	2.4	
Average	4.3	6.1		0.0	21.0		0.1	0.1		0.1	10.1	
Percentile Back of Queue (95th	percentile)			 	·			*	1	·····		<u> </u>
1 6	2.0	1.9		2.1	1.7		2.1	2.1		2.1	1.8	
Back of Queue	8.5	11.7		0.1	35.4		0.1	0.2		0.2	18.6	
ueue Storage Ratio												
Queue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ieue Storage	0	0		0	0		0	0		0	0	
Average Queue Storage Ratio												
% Queue Storage Ratio] ,		-							}		

yright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:33 AM

						HCS+	· DE	TAIL	_		_									
General Informa									-	Site Inf										
Analyst	MG								ŀ	Intersed					Field Rd at	Powe	r Roa	nd		[
Agency or Co.	TASK Eng								Т	Area Ty	•				er areas					
Date Performed	8/8/2006								١	Jurisdic	tion		Gil	bert						5 *
Time Period									1	Analysi	s Ye	ar								<u> </u>
									F	Project	ID				s Field Road	l at P	ower.	Road		
Volume and Tim	ing Input												An	PK	Hr-2025					
voidine and min	mg mpac		T		EB		П		_	WB			\top		NB				SB	
			LT		TH	RT		LT		TH		RT		LT	TH	R	T	LT	TH	BI
Number of Lanes	, N1		1		3	0		1		3		0	\perp	1	3	. 0		1	3	
Lane Group			L	17	TR .	<u> </u>		L		TR				L	TR			L	TR	
Volume, V (vph)		_	336		258	476		10		111		1		267	724	4	6	2	315	2
% Heavy Vehicles	s, %HV		0		0	0		0		0		0		0	0	0		0	0	-
Peak-Hour Factor	r, PHF		0.92	0.	.92	0.92		0.92		0.92		0.92	0	92	0.92	0.9	2	0.92	0.92	0.92
Pretimed (P) or A	ctuated (A)		Α		A	Α		Α		Α	T	А		A	A	A		A	A	1
Start-up Lost Tim	e, l1		2.0	2	2.0			2.0		2.0			12	2.0	2.0	Π		2.0	2.0	1
Extension of Effect	ctive Green, e		2.0	7 2	2.0		\neg	2.0		2.0	T		2	2.0	2.0			2.0	2.0	
Arrival Type, AT			3		3			3		3	T		\top	3	3	T		3	3	
Unit Extension, U	E		3.0	3	3.0		\neg	3.0		3.0			3	.0	3.0			3.0	3.0	
Filtering/Metering	, I		1.000	7 1	.000			1.000		1.000	,		1	.000	1.000		•	1.000	1.000	1
Initial Unmet Dem	and, Qь		0.0	1	0.0		T	0.0		0.0			(0.0	0.0			0.0	0.0	
Ped / Bike / RTO	₹ Volumes		0		0	60		0		0		0		0	0	40)	0	0	10
Lane Width			12.0	1.	2.0			12.0		12.0			1.	2.0	12.0			12.0	12.0	
Parking / Grade /	Parking		N		0	Ν		N		0		N		N	0	N		N	0	N
Parking Maneuve	rs, Nm																			_
Buses Stopping, I	Vв		0		0			0		0				0	0			0	0	
Min. Time for Ped	lestrians, G _P				3.2					3.2					3.2				3.2	
Phasing	EW Perm	W	B Only		D:	3		04	1		N	IS Perr	'n		NB Only			07	0	8 📆
Timing	G = 37.2	G =	3.0		3 =		G	} =			G =	25.0		G	S = 10.4		G =		G =	1004
riming	Y = 4	Y =	0		<i>(</i> =		Υ	' =			Y =	4		Υ	′ = 0		Y =		Y =	
Duration of Analy	sis, T = 0.25													C	ycle Length	C =	83.6	;		1
Lane Group Cap	acity, Control De	elay, a	nd LOS			іоп														
		-		EB			<u> </u>	= - 1	_	WB	1 =				NB				SB	_~
Adjusted Flow Ra	ito v		LT 365	TH	_	RT	L		_	TH	R	1	LT		TH	RT		LT	TH	
Lane Group Capa		\dashv	567	732 209			1	90	-	122 2733	 		290		794			2	655	
v/c Ratio, X	icity, c	-1.	0.64	0.35	$\boldsymbol{-}$		0.0		_	.04	-	- +	453 0.64		1546 0.51			136 0.01	1437 0.46	-
Total Green Ratio	o, a/C		0.44	0.33			0.5		-	.53	\vdash		0.47		0.30			0.30	0.30	-
Uniform Delay, d		_	18.0	15.3	-		13.		-).5	\vdash		25.7		24.3			20.6	23.8	+=
Progression Fact			1.000	1.00			1.0	i	_	.000	 		1.00		1.000			1.000	1.000	
Delay Calibration			0.22	0.11	十		0.1		-	.11	 		0.22		0.12			0.11	0.11	T
Incremental Delay	y, d ₂		2.5	0.1			0.	.0	. (0.0			3.0)	0.3			0.0	0.2	
Initial Queue Dela	tial Queue Delay, d ₃		0.0	0.0			0.0	0	0	0.0			0.0		0.0			0.0	0.0	
Control Delay			20.6	15.4	1		13	3.8	<u> </u>	9.5			28.	7	24.6			20.7	24.0	,e-,
Lane Group LOS			C	В			В		7	A	T		С		С			С	С	
Approach Delay			17.	1	····			9.	9				25.7					24.0		
Approach LOS			В					A	1						С				С	£. [
Intersection Delay	1		21.	4				$X_c = 0$	0.70	0			Inter	secti	ion LOS				С	<u> </u>
Copyright © 2005 Univer	ved	-	,,						нс	S+TM V						Gent	erated: 11/8/2	2006 5:33		

General Information

roject Description Williams Field Road at Power Road AM Pk Hr-2025

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
ane Group	L	TR		L	TR	i I	L	TR		L	TR	
itial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Flow Rate/Lane Group	365	732		11	122		290	794		2	655	
atflow/Lane	1275	1723		737	1897		960	1897		455	1763	
apacity/Lane Group	567	2090		390	2733		453	1546		136	1437	
ow Ratio	0.3	0.2		0.0	0.0		0.3	0.2		0.0	0.1	
√c Ratio	0.64	0.35		0.03	0.04		0.64	0.51		0.01	0.46	
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
rrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
J.	6.6	4.1		0.1	0.5		4.0	5.6		0.0	4.5	
"	0.5	0.6		0.4	0.7		0.4	0.5		0.2	0.4	
J ₂	0.8	0.3		0.0	0.0		0.7	0.5		0.0	0.4	
Average	7.4	4.4		0.1	0.5		4.7	6.1		0.0	4.9	
Percentile Back of Queue (95th	percentile)	<i>!</i>	<u></u>	·				<u> </u>	L			<u> </u>
π γ %	1.9	2.0		2.1	2.1		2.0	1.9		2.1	2.0	
ack of Queue	14.1	8.7		0.3	1.1		9.2	11.7		0.1	9.6	
ueue Storage Ratio												
lueue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
verage Queue Storage Ratio												

Copyright @ 2005 University of Florida, Ali Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:34 AN

					HCS+	DETAIL								
neral Informa								ormation	VA GUE	n Field Rd at I	Power Pes	d		T I
Analyst	MG						Intersec			n Fleid Ro at i er areas	-ower Roa	ď		.
jency or Co.	TASK Eng						Jurisdic	•	Gilber					
ate Performed	8/8/2006						Analysis		Giber	•				
Time Period							1		Willian	ns Field Road	at Power i	Road		~
<u> </u>							Project	טו		Hr-2025				
olume and Tim	ing Input													
				EB			WB	1 ==		NB	7 57	 _	SB	T ==
			LT	TH	RT	LT	TH	RT	LT.	TH	RT	LT	TH	BI
umber of Lanes	s, N1		1	3	0	1	3	0	1 1	3	0	1	3	
Lane Group			L L	TR		L	TR			TR	 	L	TR	
olume, V (vph)			250	203	451	10	269	1	399		9	4	644	5
် Heavy Vehicle			<u> </u>	- 0	0	0	0	0	0	0	0	0	0	1000
Peak-Hour Facto			0.92	0.92	0.92	0.92	0.92	0.92	0.92		0.92	0.92	0.92	0.92
Pretimed (P) or A			A	A	A	A	$\frac{A}{20}$	A	A	A	A	A	A	1
start-up Lost Tim			2.0	2.0		2.0	2.0		2.0	2.0	 	2.0	2.0	+
Extension of Effe	ctive Green, e		2.0	2.0		2.0	2.0		2.0	2.0	 	2.0	2.0	1-5-
Arrival Type, AT			3	3	4	3	3		3	3	 	3	3	
Unit Extension, L			3.0	3.0		3.0	3.0		3.0	3.0	 	3.0	3.0	
Filtering/Metering			1.000	1.000		1.000		<u> </u>	1.00		 	1.000	1.000	├- ₹─
initial Unmet Der			0.0	0.0	 	0.0	0.0		0.0	0.0	 	0.0	0.0	+
Ped / Bike / RTO	R Volumes		10	0	60	0	0		0	0	10	0	0	10
Lane Width			12.0	12.0	 -	12.0	12.0		12.0		 	12.0	12.0	
Parking / Grade			N N	0	N	N N		N	N	0	N N	N	0	N
Parking Maneuv			 						- _		 	 	 	+
Buses Stopping,			0	0		0	1 0		- 0		J	0	3.2	1 1
Min. Time for Pe			<u> </u>	3.2			3.2	1	٠Ļ	3.2		<u></u>		\n_==
Phasing	EW Perm	4	02		03	0.	4	NS Per		NB Only	 -	07		08
Timing	G = 23.0	G =		G=		G =		G ≈ 25.0		G = 13.0	G=		G =	
	Y = 4	Y =		Y =		Y =		Y = 4		Y = 6	Y =		Y =	
Duration of Anal										Cycle Length	, C = 75.0) 		
Lane Group Ca	pacity, Control L	velay, a	na LOS I	<i>Determina</i> EB	เบอก		WB			NB	-		SB	
}		F	LT	TH	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	
Adjusted Flow R	ate, v		272	646		11	293		434	610		4	1439	
Lane Group Cap			329	1431		191	1586		510	2891		252	1592	
v/c Ratio, X	···		0.83	0.45		0.06	0.18		0.85	0.21		0.02	0.90	ì
Total Green Rat	io, g/C		0.31	0.31		0.31	0.31		0.56	0.56		0.33	0.33	
Uniform Delay,	i ₁		24.1	20.9		18.4	19.1		24.7	8.2		16.8	23.9	
Progression Fac			1.000	1.000		1.000	1.000	L	1.000	1.000		1.000	1.000	E.J.
Delay Calibratio	n, k		0.36	0.11		0.11	0.11		0.38	0.11		0.11	0.43	
Incremental Del	ay, d ₂		15.8	0.2		0.1	0.1		13.0	0.0		0.0	7.7	
Initial Queue De	elay, d ₃		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay			40.0	21.2		18.5	19.2		37.7	8.3		16.8	31.5	
Lane Group LO	S		D	С		В	В		D	Α		В	С	
Approach Delay			26.	7		1:	9.1			20.5			31.5	
Approach LOS			С				В			С			С	* I
Intersection Del	ay		26.	5		X _c =	0.89		interse	ection LOS			C	
Copyright © 2005 Univ	versity of Florida, All Rig	ants Rese	rved					HCS+™	Version 5.2			Ge	nerated: 11/8/	2006 5:2

General Information

Project Description Williams Field Road at Power Road PM Pk Hr-2025

Average Back of Queue		EB	·		WB		1	ND		Τ	00	
3	<u> </u>	TH	RT	LT	TH	RT	LT	NB TH	RT	LT	SB TH	RT
ane Group		TR	K1	L	TR		L	TR	Ki	L	TR	+ RI
itial Queue/Lane	0.0	0.0		0.0	0.0	 	0.0	0.0	 	0.0	0.0	十一
low Rate/Lane Group	272	646		11	293		434	610	 	4	1439	
atflow/Lane	1074	1712		623	1899		912	1895	 	757	1753	1
Capacity/Lane Group	329	1431		191	1586		510	2891		252	1592	T
ow Ratio	0.3	0.1		0.0	0.1		0.5	0.1		0.0	0.3	\vdash
/c Ratio	0.83	0.45		0.06	0.18		0.85	0.21		0.02	0.90	
ractor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Arrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
21	5.3	4.0		0.2	1.6		4.9	2.3		0.1	10.5	
3	0.3	0.4		0.2	0.4		0.4	0.6		0.3	0.4	Π
Σ2	1.3	0.3		0.0	0.1		2.0	0.2		0.0	3.0	
Average	6.5	4.3		0.2	1.7		6.9	2.5		0.1	13.5	Π
Percentile Back of Queue (95th	percentile)								·			
2 %	1.9	2.0		2.1	2.0		1.9	2.0		2.1	1.8	
Back of Queue	12.6	8.5		0.4	3.6		13.1	5.0		0.1	24.0	
ueue Storage Ratio												
Queue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
Verage Queue Storage Ratio												
Queue Storage Ratio			<u></u>	1								

Copyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:35 AN

TWO-WAY STOP CONTROL SUMMARY neral Information Site Information MG Cooley Loop S./Cooley Loop W. ntersection Analyst Agency/Co: TASK Eng Jurisdiction Gilbert ite Performed 8/8/2006 Analysis Year 2025 AM PK Hr-2025 alysis Time Period Project Description Cooley Loop South at Cooley Loop West AM Pk Hr-2025 North/South Street: Cooley Loop West ast/West Street: Cooley Loop South <u>ايا</u> Study Period (hrs): 0.25 ersection Orientation: East-West Vehicle Volumes and Adjustments Eastbound Westbound **Viajor Street** ופר 3 vement 2 4 6 L T R L Ŧ R /olume (veh/h) 5 5 5 5 307 42 ak-Hour Factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 urly Flow Rate, HFR (veh/h) 5 5 5 5 333 45 0 Percent Heavy Vehicles 0 TE: Undivided dian Type Channelized 0 0 18 0 1 1 1 1 0 L TR L TR nfiguration stream Signal 0 0 IV. Northbound Southbound Minor Street 7 9 10 12 8 11 vement Т R ì 1 Т R W. volume (veh/h) 5 93 53 5 455 5 eak-Hour Factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 57 urty Flow Rate, HFR (veh/h) 5 101 5 494 111 rcent Heavy Vehicles 0 0 0 0 0 Percent Grade (%) 0 0 Ν N red Approach 0 0 Storage RT Channelized 0 0 1 1 0 1 1 0 m A TR TR L nfiguration Delay, Queue Length, and Level of Service 11: Westbound Northbound Southbound Eastbound proach 7 12 vement 1 4 8 9 10 11 760 Lane Configuration L L L TR L 5 5 5 158 5 499 veh/h) 54B (m) (veh/h) 1192 1623 85 652 413 0.00 0.00 0.06 0.24 0.01 10.96 0.01 0.01 0.18 0.95 0.04 % queue length 47-1 Control Delay (s/veh) 8.0 7.2 50.0 12.3 13.8 Α Α Ε В В E proach Delay (s/veh) 13.4 46.8 Approach LOS В Ε Generated: 11/8/2006 right © 2005 University of Florida, All Rights Reserved HCS+™ Version 5.2

		TWO-WAY STO			 			
eneral Information			Site Info					
Analyst	MG		Intersect				S./Cooley Loo	р <i>W</i> .
Agency/Co.	TASK Eng		Jurisdicti			Gilbert		
ate Performed	8/8/2006 PM PK Hr-20	025	Analysis	Year		2025		
roject Description Cooley Loop			25			<u> </u>		
st/West Street: Cooley Loop So	outh	bop West TWIFKTH-ZOZ		th Street: Co	oley Loop Wes	t .		
ersection Orientation: East-We				iod (hrs): 0.2		-		
ehicle Volumes and Adjustn	nents							
ijor Street	T	Eastbound				Westboun	d	
ovement	1	2	3		4	5		6
	L	Т	R		L_	T		R
lume (veh/h)	5	5	5		5	64		17
Jak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
ourly Flow Rate, HFR (veh/h)	5	5	5		5	69		18
rcent Heavy Vehicles	0				0			_
edian Type				Undivided				
Ţ Channelized	<u></u>		0					0
nes	1	1	0		1	1		·0
onfiguration	L		TR		L			TR
stream Signal		0				0	<u>L</u> _	
inor Street		Northbound	<u> </u>			Southbour	nd	
ovement	7	8 T	9		10	11 T		12
diume (veh/h)	5	406	224		L	124	·	8 5
eak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
gurly Flow Rate, HFR (veh/h)	5	441	243		5	134		5
rcent Heavy Vehicles	0	0	0		0	0		0
ercent Grade (%)		0				0		
red Approach		N				N		
Storage		0				0		
T Channelized			0					0
nes	1	1	0		1	1		0
onfiguration	L		TR		L			TR
elay, Queue Length, and Level	of Service							
proach	Eastbound	Westbound		Northbound			Southbound	
overnent	1	4	7	8	9	10	11	12
ne Configuration	L	L	L		TR	L		TR
(veh/h)	5	5	5		684	5		139
(m) (veh/h)	1522	1623	680		861	222		787
	0.00	0.00	0.01		0.79	0.02		0.18
% queue length	0.01	0.01	0.02		8.40	0.07		0.64
ntrol Delay (s/veh)	7.4	7.2	10.3		23.2	21.6		10.6
os	Α	A	В		С	С		В
proach Delay (s/veh)	-	-		23.1	<u> </u>		10.9	
pproach LOS	_			С	· · · · · · · · · · · · · · · · · · ·		В	
Tyright © 2005 University of Florida, All Right	ls Reserved			HCS+™ Version	n 5 2		Generated: 1	1/8/2006 5

General Informa	ation					* DETAI		formation						
Analyst	MG						Interse			er Rd/Cooley	Loop So	uth		
Agency or Co.	TASK Eng						Area T	уре		her areas	•			· E
Date Performed	8/8/2006						Jurisdi	ction	Gilbe	rt				
Time Period							Analys	is Year						
							Project	מו		er Road at Co	oley Loc	p South		-
Volume and Tin	ning Innut								<u>AM P</u>	k Hr-2025				
voiume and Tim	iing input			EB			WB			NB				
			LT	TH TH	RT	LT	TH	RT			RT	1	SB	
Number of Lanes	s Na		1	1	10	1	1	10				LT	TH	Į₽Į
Lane Group	5, 141		<u></u>	TR	+-	1/	TR		1	2	0	1	2	(E
			7		+					TR	+	<u> </u>	TR	┷
Volume, V (vph)				12	28	72	103		15		61	64	869	13
% Heavy Vehicle	·····		0	0	0	0	0	0	0	0	0	0	0	UE
Peak-Hour Facto	 		0.92	0.92	0.92	0.92	0.92	0.92	0.92		0.92	0.92	0.92	0.92
Pretimed (P) or A			A	A	A	A	A	A	A	A	A	A	Α	4
Start-up Lost Tim			2.0	2.0	 	2.0	2.0		2.0			2.0	2.0	
Extension of Effe	ctive Green, e		2.0	2.0	 	2.0	2.0		2.0			2.0	2.0	
Arrival Type, AT			3	3	 	3	3		3	3		3	3	
Unit Extension, L			3.0	3.0	 	3.0	3.0		3.0	3.0		3.0	3.0	
Filtering/Metering			1.000	1.000		1.00	1.00	9	1.00	00 1.000		1.000	1.000	
Initial Unmet Den]	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Ped / Bike / RTO	R Volumes		0	0	0	0	0	0	0	0	40	0	0	10
_ane Width			12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Parking / Grade /	Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking Maneuve	ers, Nm													-
Buses Stopping,	Nв		0	0		0	0		0	0		0	0	
Min. Time for Per	destrians, Gp			3.2			3.2			3.2			3.2	
Phasing	EW Perm	WB	Only	03	3		4	NS Pe	·m	Excl. Left		07		08 .
	G = 25.2	G = 3.	0	G=		G =		G = 35.	0	G = 10.4	G	=	G=	
∏ming	Y = 4	Y = 0		Y =		Y =		Y = 4		Y = 0	Y		Υ =	
Ouration of Analy	sis, T = 0.25							<u></u>		Cycle Length	. C = 8	1.6	·	
ane Group Cap	pacity, Control D	elay, and	LOS De	terminati	on					,				
				EВ		I	WB		Ī	NB			SB	
		L			RT	LT	TH	RT	LT	TH	RT	LT	TH	
djusted Flow Ra			3	43	<u> </u>	78	199	<u> </u>	16	1208		70	1018	
ane Group Capa	acity, c			525		559	700		419	1547		412	1535	
v/c Ratio, X		0.0	2 0	.08		0.14	0.28		0.04	0.78		0.17	0.66	1.2
otal Green Ratio	o, g/C	0.3	1 0	31		0.39	0.39		0.61	0.43		0.61	0.43	
Jniform Delay, d	<u> </u>	19.	6 2	0.0		16.7	16.8		17.0	20.0		22.3	18.6	
Progression Fact	or, PF	1.0	000 1	.000		1.000	1.000		1.000	1.000		1.000	1.000	19-
elay Calibration	, k	0.1	1 0	.11		0.11	0.11		0.11	0.33		0.11	0.24	
ncremental Dela	y, d ₂	0.	.0	0.1		0.1	0.2		0.0	2.7		0.2	1.1	
Initial Queue Dela	ay, d ₃	0.0) (0.0		0.0	0.0		0.0	0.0		0.0	0.0	T-17
ontrol Delay		19	0.7	20.1		16.9	17.1	1	17.0	22.7		22.5	19.7	1
onli of Delay	i	В	一十	c		В	В	 	В	С		C	В	
			20.0				7.0	. 	+	22.6			19.9	
ane Group LOS									 	C				
ane Group LOS			C			i .	0		•					
ane Group LOS Approach Delay	v		C 20.8	·			B 0.47		Intomo	ction LOS			C	<u> </u>

General Information

Project Description Recker Road at Cooley Loop South AM Pk Hr-2025

-		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L	TR		L	TR		L	TR		L	TR	
tial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Flow Rate/Lane Group	8	43		78	199		16	1208		70	1018	
atflow/Lane	1100	1701		1417	1775		692	1894		680	1879	
Capacity/Lane Group	340	525		559	700		419	1547		412	1535	
ow Ratio	0.0	0.0		0.1	0.1		0.0	0.3		0.1	0.3	
v/c Ratio	0.02	0.08		0.14	0.28		0.04	0.78		0.17	0.66	
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Arrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
PF Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
U .	0.1	0.7		1.1	3.1		0.1	12.3		0.6	9.7	
kn	0.3	0.4		0.5	0.5		0.4	0.6		0.4	0.6	
<u>n</u> Q ₂	0.0	0.0		0.1	0.2		0.0	1.9		0.1	1.1	
Average	0.1	0.7		1.2	3.3		0.2	14.2		0.7	10.7	
Percentile Back of Queue (95th	percentile)	 			·	<u> </u>	<u> </u>	<u> </u>			<u> </u>	
₹	2.1	2.1		2.1	2.0		2.1	1.8		2.1	1.8	T
Back of Queue	0.3	1.5		2.4	6.6		0.3	25.2		1.5	19.7	
ueue Storage Ratio				zi								
Queue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
Average Queue Storage Ratio												
₩ Queue Storage Ratio												

Copyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:37 /

11/8/2006																	T I
					HCS+	<u>DETAII</u>	_										
General Informa	tion								ormation								
Analyst	MG							ntersect				Rd/Cooley L	оор.	South			91
Agency or Co.	TASK Eng						- 1	∖rea Ty _l			All other	areas					
Date Performed	8/8/2006						- 1	lurisdict		(Gilbert						-
Time Period							ΙA	Analysis	Year	,	n!!	2			S- 11		91
							Р	Project !	D		Recker i PM Pk H	Road at Cod Ir-2025	oley I	Loop s	south		
Volume and Tim	ning Input													****			
	······································			EB	-			WB				NB				SB	
			LT	TH	RT	LT		ΤΉ	RT		LT	TH	F	₹T	LT	TH	RT
Number of Lanes	s, N1		1	1	0	1		1	0		1	2	0)	1	2	RT 6
Lane Group			L	TR		L		TR			L	TR			L	TR	╅
Volume, V (vph)			30	62	107	81		36	186		21	810	7	72	131	1433	1 7
% Heavy Vehicle	s, %HV		0	0	0	0		0	0		0	0	10)	0	0	100
Peak-Hour Facto			0.92	0.92	0.92	0.92	一	0.92	0.92	\neg	0.92	0.92	0.9		0.92	0.92	0.92
Pretimed (P) or A			A	A	A	A		Α	A	\neg	A	A	A		A	A	A A
Start-up Lost Tim			2.0	2.0	- 	2.0		2.0	1		2.0	2.0	+		2.0	2.0	1 7
Extension of Effe			2.0	2.0		2.0	\neg	2.0	+-	_	2.0	2.0	╁		2.0	2.0	+
Arrival Type, AT			3	3		3	\dashv	3	+	_	3	3	╁		3	3	
Unit Extension, U	JE		3.0	3.0		3.0	_	3.0	+		3.0	3.0	╁╌		3.0	3.0	
Filtering/Metering			1.000	1.00	00	1.00	7	1.000		ᅥ	1.000	1.000	╁╌		1.000	1.000	+-
Initial Unmet Den			0.0	0.0	<u> </u>	0.0		0.0	_	\dashv	0.0	0.0	╁		0.0	0.0	1-5
Ped / Bike / RTO	i		0	0	60	0		0	0	ᅱ	0	0	40	0	0.0	0	10
Lane Width	TO TOTAL TOTAL		12.0	12.0		12.0	\dashv	12.0	- 	\dashv	12.0	12.0	+-		12.0	12.0	10
Parking / Grade /	Parking		N N	0	- N	N		0	N	\dashv	N N	0	1,		N N	0	N
Parking Maneuve			1 7	+-	- '* -	- 1 /	-	<u> </u>	- ^	⊣	- 14	+	 ^		 "	+	+~
Buses Stopping,			0	10		- 0		0	+	-	ō	0	╁╾		0	0	+
Min. Time for Per			+	3.2		- °		3.2		-		3.2	<u>}</u>		 	3.2	
		T	<u> </u>	3.4				3.2			<u> </u>				<u> </u>		
Phasing	EW Perm	+	B Only	-	03		04		NS Pe			Excl. Left			07		08
Timing	G = 25.2	G=		G≔		G =			G = 35.	0		= 10.4		G =		G =	
	Y = 4	Y =	0	Y =		Υ =			Y = 4			= 0		Y =	_	Υ=	ے;
Duration of Analy											I C	cle Length	, C =	81.6	; =		
Lane Group Cap	pacity, Control D	elay, a	nd LOS E	PT 10	nation	1		1A/D				ND			τ	SB	
		- F	LT]	TH	RT	LT		TH TH	RT	+-	LT	TH	R	Т	LT	TH	
Adjusted Flow Ra	ate, v	一十	33	118	 	88	-+-	241		-	23	915	Ë	<u> </u>	142	1562	
Lane Group Cap		_	306	549		492	+	555			112	1543			450	1551	+
v/c Ratio, X		- 1		0.21		0.18		37		+-	06	0.59			0.32	1.01	
Total Green Ratio	o. a/C	_		0.31	 	0.39		39			61	0.43	_		0.61	0.43	+-
Uniform Delay, d				20.9		18.7	+	7.5		-	4.8	17.8			19.5	23.3	35
Progression Fact				1.000		1.000	-	.000			.000	1.000			1.000	1.000	
Delay Calibration				0.11	+	0.11		11		-	.11	0.18	 		0.11	0.50	1
Incremental Dela		-	0.2	0.11	+	0.11	+-	0.4	 		0.1	0.18	 		0.11	24.6	1
Initial Queue Del		-+	0.0	0.2	+	0.2				+-			├		0.4	0.0	+-'~
Control Delay	ay, u <u>3</u>					-		0.0	 		0.0	0.0	<u> </u>			47.9	+-
		-+	20.3	21.1		18.9		7.8	 	+-	24.8	18.5	<u> </u>		19.9		+:
Lane Group LOS			C	C		В		В		+-	<u>c</u>	В	<u>L</u>		В	D	
Approach Delay		-4	20.9	-		1	18.1			+	18					45.6	
Approach LOS			<u>C</u>			 	В			+		3			 		
	lersection Delay		33.4	t		1 X =	= 0.61	7		1 In	tersection	-100			1	С	

BACK-OF-QUEUE WORKSHEET

General	Inform	nation

Goject Description Recker Road at Cooley Loop South PM Pk Hr-2025

Average Back of Queue

Average Back of Queue												
		EB	·		WB	T		NB		<u> </u>	SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L	TR		L	TR		L	TR		L	TR	
Itial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Flow Rate/Lane Group	33	118		88	241		23	915		142	1562	
atflow/Lane	990	1777		1246	1661		680	1889		743	1899	
Capacity/Lane Group	306	549		492	655		412	1543		450	1551	
ow Ratio	0.0	0.1		0.1	0.1		0.0	0.3		0.2	0.4	
v/c Ratio	0.11	0.21		0.18	0.37		0.06	0.59		0.32	1.01	
actor	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Arrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
⊇F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
a.	0.5	2.0		1.2	3.9		0.2	8.3		1.3	18.6	
` ā	0.3	0.5		0.4	0.5		0.4	0.6		0.4	0.6	
5 5 ₂	0.0	0.1		0.1	0.3		0.0	0.8		0.2	8.1	
Average	0.6	2.1		1.3	4.2		0.2	9.1		1.5	26.6	
Percentile Back of Queue (95th	percentile)											-
T/6	2.1	2.0		2.1	2.0		2.1	1.9		2.1	1.6	
Back of Queue	1.2	4.3		2.7	8.2		0.5	17.0		3.1	43.6	
ueue Storage Ratio												
Queue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0 '		0	0		0	0		0	o	
verage Queue Storage Ratio												
% Queue Storage Ratio												

Copyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated; 11/8/2008 5:37 AN

		TWO-WAY STO	P CONTROL	SUMMA	RY			
eneral Information			Site Info	ormation				
malyst	MG		Intersect	ion		Cooley Loop	S./Cooley Loc	
Agency/Co.	TASK Eng		Jurisdict			Gilbert		
ate Performed	8/8/2006		Analysis	Year		2025		
nalysis Time Period	AM PK Hr-20							
Project Description Cooley Loc		oop East AM Pk Hr-202	25	45 05 4	Control of			
East/West Street: Cooley Loop ersection Orientation: East-V					Cooley Loop E 0.25	asi		
			Othay 1 e	nou (ms).	0.25			
vehicle Volumes and Adjus	tments	Coathouse				186-46		
Major Street	- 	Eastbound 2	3		4	Westboun 5	-	6
Jveinerit	 		R		_			R
Volume (veh/h)	30		5			- 		- 1\ ;e= ?
Peak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
ourly Flow Rate, HFR (veh/h)	32	0	5		0	0		0
Percent Heavy Vehicles	0	-			0	_·	'	- 1
⁴ edian Type				Undivid	led			
「Channelized			0					0
anes	0	0	0		0	0		0
onfiguration	LTR	LR						
ostream Signal		0				0		
Minor Street		Northbound				Southbour	nd	
*ovement	7	8	9		10	11		12
<u> </u>	<u> </u>	T	R		<u> </u>	T		R
volume (veh/h) Peak-Hour Factor, PHF	19 0.92	336			0.00	105		7 -
	20	0.92	0.92		0.92 0	0.92		0.92
ourly Flow Rate, HFR (veh/h) recent Heavy Vehicles	0	365 0	0	 +	0	114	-+-	7
Percent Grade (%)	- -	0	ــــــــــــــــــــــــــــــــــــــ			0		
ared Approach		T N	<u> </u>			N N	$\overline{}$	
Storage		0	·			0		
RT Channelized			0					0
nes	1	1	0		0	1		0
infiguration	L	T						TR
Delay, Queue Length, and Leve	el of Service							
nproach	Eastbound	Westbound		Northbou	ind		Southbound	
vement	1	4	7	8	9	10	11	12
Lane Configuration	LTR		L	Т				
veh/h)	32		20	365				121
(m) (veh/h)	1636		744	813				821
v/c	0.02		0.03	0.45				821 h
% queue length	0.06		0.08	2.35				0.52
Control Delay (s/veh)	7.2		10.0	13.0				1
- ĢS	Α		A	В				В
proach Delay (s/veh)		_		12.8	····		10.1	5
Approach LOS		-		В			В	
	inhin Danas and							4/0/2000 5:38 A

Tyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 __5:38

neral Information		TWO-WAY STO		ormation				
Analyst	MG		Intersec			Cooley Loop	S /Cooley I	oon F
Agency/Co.	TASK Eng		Jurisdic			Gilbert	STOOLEY L	-50p L.
ate Performed	8/8/2006		Analysis			2025	····	
halysis Time Period	PM PK Hr-20	25						
Project Description Cooley Los			25					
st/West Street: Cooley Loop	South			uth Street:	Cooley Loop Ea	est		~ _
ersection Orientation: East-V				eriod (hrs):				_
vehicle Volumes and Adjus	tments							
pjor Street	Tanona -	Eastbound				Westbour	ıd	
vement	1	2	3		4	5	<u> </u>	6
	L	Ť	R		L	T		R
lume (veh/h)	18		5					
ak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
ourly Flow Rate, HFR (veh/h)	19	0	5		0	0		0
Trocent Heavy Vehicles	0	_			0	_		<u> </u>
*adian Type			•	Undivi	ded			
; Channelized			0	T				0
್ಷವಾes	0	0	0		0	0		0
nfiguration	LTR	LR						
stream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
*overnent	7	8	9		10	11		12
	L	Т	R		L	т		R
volume (veh/h)	24	247	-		2.00	376		42
Peak-Hour Factor, PHF	0.92	0.92	0.92		0.92	0.92		0.92
urly Flow Rate, HFR (veh/h)	26	268	0		0	408		45
rcent Heavy Vehicles	0	0	0		0	0		0
Percent Grade (%)	_	0				0		
ared Approach		N N				N		
Storage						0		_
RT Channelized			0					0
"nes	1	1	0		0	1		0
nfiguration		T						TR
ിay, Queue Length, and Leve	el of Service							
proach	Eastbound	Westbound		Northbo	und		Southboun	d
vement	1	4	7	8	9	10	11	12
ne Configuration	LTR		L	Т				TR
veh/h)	19		26	268				453
(m) (veh/h)	1636		407	846				862
Vic	0.01		0.06	0.32				0.53
% queue length	0.04		0.20	1.37		:		3.13
ntrol Delay (s/veh)	7.2		14.4	11.2				13.7
os.	Α		В	В				В
proach Delay (s/veh)				11.5			13.7	
Approach LOS				В			В	
Syright © 2005 Liniversity of Florida All R	inhts Reserved			HC6+M	Version 5.2	-	Generates	1: 11/8/2006 5:38 A

					UCCL	DETAIL	D DED	NOT						
General Informa	otion				nus+"	DETAILE		ormation						
	MG MG						Intersec		Recke	r Rd at Boulev	ard Road			
Analyst Agency or Co.	MG TASK Eng						Area Ty		All oth	er areas				c
Date Performed	8/8/2006						Jurisdict	tio n	Gilber	<u>+</u>				
	a/a/2000						Analysis	Year						نے
Time Period							Project I	מו	Recke	r Road at Bou	levard Roa	MA be		
							1 Toject		Pk Hr-	2025				-
Volume and Tim	ning Input	···					1850			NB		ι	SB	
ĺ			<u></u>	EB	T ==	+	WB	T 5=	- 		DT	LT	TH	
			LT	TH	RT	LT	TH	RT	LT	TH TH	RT		 	RI
Number of Lanes	5, N1		1	1		1	1	0	1	2	0	2	2	
Lane Group			L	TR		<u> </u>	TR		L	TR	}	L	TR	
Volume, V (vph)			214	3	48	58	2	310	13	779	36	128	790	
% Heavy Vehicle			0	0	0	0	0	0	0	0	0	0	0	دع
Peak-Hour Facto	r, PHF		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Pretimed (P) or A	Actuated (A)		Α	Α	Α	Α	A	A	A	A	A	Α	A	1
Start-up Lost Tim	ne, i1		2.0	2.0		2.0	2.0		2.0	2.0	<u> </u>	2.0	2.0	
Extension of Effe	ctive Green, e		2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Arrival Type, AT			3	3		3	3		3	3		3	3	
Unit Extension, L	JE		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Filtering/Metering	g, I		1.000	1.000		1.000	1.000		1.00	0 1.000		1.000	1.000	
Initial Unmet Der			0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	1:22
Ped / Bike / RTO	R Volumes		0	0	0	0	0	0	0	0	0	0	0	10
Lane Width			12.0	12.0	 	12.0	12.0	1	12.0	12.0		12.0	12.0	
Parking / Grade	/ Parking		N	0	N	N	0	N	N	0	N	N	0	N
Parking Maneuve			1	1	- - - - - - - - - - 	 					1	1		
Buses Stopping,			0	0		0	0	_	0	0	 	0	0	
Min. Time for Pe			 	3.2		 -	3.2			3.2		1	3.2	J
Phasing	EW Perm	10/1	3 Only		03	T 04		NS Pe	m	Excl. Left	T	07	To	8 =
Phasing	G = 25.2	G =		 G =		G=	<u> </u>	G = 35.0		G = 10.4	G =		G=	
Timing	Y = 4	Y=		Y=		Y=		Y = 4		Y = 0	Y =		Y =	
Dunation of Analy	<u> </u>			┵		1, -				Cycle Length		<u> </u>		
Duration of Analy		Jan 6	nd I 06 f	otori-	otion				لصيد	Cycle Length	, 0 = 07.0			
Lane Group Cap	pacity, Control De	ay, a	IU LUS L	EB	20011		WB		Г	NB		1	SB	
		H	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	
Adjusted Flow R	ate, v	\neg	233	55		63	339	1	14	886		139	904	
Lane Group Cap	acity, c		230	504		548	638		454	1542		1108	1540	
v/c Ratio, X		1	.01	0.11		0.11	0.53	T	0.03	0.57		0.13	0.59	
Total Green Rati	io, g/C	10		0.31		0.39	0.39	1	0.61	0.43		0.61	0.43	
Uniform Delay, o				20.2		16.8	18.9		15.0	17.7	l	15.4	17.8	压
Progression Fac		-		1.000		1.000	1.000		1.000	1.000		1.000	1.000	
Delay Calibration				0.11		0.11	0.13	1	0.11	0.17		0.11	0.18	1
Incremental Dela			62.7	0.1		0.1	0.9	 	0.0	0.5		0.1	0.6	
Initial Queue De			0.0	0.0		0.0	0.0	 	0.0	0.0	 	0.0	0.0	1
Control Delay	,, -3	-	90.9	20.3		16.9	19.8	1	15.0	18.2	 	15.4	18.4	1_
Lane Group LOS	<u> </u>		F F	C C		B	B	 	B	B	 	В	В	15
Approach Delay			77.4		L		9.3		+	18.1	<u></u>	╅┈┈	18.0	
Approach LOS			77.4 E				э.з В		+	B		+	B	
			24.7	,		X _c =			Intorno	ction LOS		+	C	 _
Intersection Dela	<u> </u>	P Ponn				T	J.03	1100.7					nerated: 11/8/	2006 5:
Copyright © 2005 Univ	ersity of Florida, All Right	s Keser	vea					HCS+™	Version 5.2	:		201		

BACK-OF-QUEUE WORKSHEET

era				

Spject Description Recker Road at Boulevard Road AM Pk Hr-2025

verage Back of Queue

	EB		ļ				NB				
LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
L	TR		L_	TR		L	TR		L	TR	
0.0	0.0	İ	0.0	0.0		0.0	0.0		0.0	0.0	
233	55		63	339		14	886		139	904	
745	1631		1389	1617		749	1887		942	1886	
230	504		548	638		454	1542		1108	1540	
0.3	0.0		0.0	0.2		0.0	0.2		0.1	0.3	
1.01	0.11		0.11	0.53		0.03	0.57		0.13	0.59	
1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
3	3		3	3		3	3		3	3	
1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
5.3	0.9		0.9	5.9		0.1	8.0		0.6	8.2	
0.3	0.4		0.5	0.5		0.4	0.6		0.5	0.6	
3.0	0.1		0.1	0.6		0.0	0.8		0.1	0.8	
8.3	0.9		0.9	6.4		0.1	8.7		0.7	9.0	
percentile)											
1.9	2.1		2.1	1.9		2.1	1.9		2.1	1.9	
15.5	2.0		1.9	12.4		0.3	16.4		1.5	16.8	
,											
25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
0	0		0	0		0	0		О	0	
	0.0 233 745 230 0.3 1.01 1.000 3 1.00 1.00 5.3 0.3 3.0 8.3 Dercentile) 1.9 15.5	LT TH L TR 0.0 0.0 233 55 745 1631 230 504 0.3 0.0 1.01 0.11 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 5.3 0.9 0.3 0.4 3.0 0.1 8.3 0.9 Dercentile) 1.9 2.1 15.5 2.0	LT TH RT L TR 0.0 0.0 233 55 745 1631 230 504 0.3 0.0 1.01 0.11 1.000 1.000 3 3 3 1.00 1.00 1.00 1.00 5.3 0.9 0.3 0.4 3.0 0.1 8.3 0.9 Dercentile) 1.9 2.1 15.5 2.0	LT TH RT LT L TR	LT TH RT LT TH L TR L TR 0.0 0.0 0.0 0.0 233 55 63 339 745 1631 1389 1617 230 504 548 638 0.3 0.0 0.0 0.2 1.01 0.11 0.11 0.53 1.000 1.000 1.000 1.000 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.3 0.9 0.9 5.9 0.3 0.4 0.5 0.5 3.0 0.1 0.1 0.6 8.3 0.9 0.9 6.4 Detectoritile) 1.9 2.1 1.9 12.4 25.0 25.0 25.0 25.0	LT TH RT LT TH RT L TR L TR 0.0 0.0 0.0 0.0 233 55 63 339 745 1631 1389 1617 230 504 548 638 0.3 0.0 0.0 0.2 1.01 0.11 0.11 0.53 1.000 1.000 1.000 1.000 3 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.3 0.9 0.9 5.9 0.5 0.5 3.0 0.1 0.1 0.6 0.5 0.5 3.0 0.1 0.1 0.6 0.4 0.5 0ercentile) 1.9 12.4 1.9 1.2.4 25.0 25.0 25.0 </td <td>LT TH RT LT TH RT LT L TR L TR L 0.0 0.0 0.0 0.0 0.0 233 55 63 339 14 745 1631 1389 1617 749 230 504 548 638 454 0.3 0.0 0.0 0.2 0.0 1.01 0.11 0.11 0.53 0.03 1.000 1.000 1.000 1.000 1.000 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.3 0.9 0.9 5.9 0.1 0.3 0.4 0.5 0.5 0.4 3.0 0.1 0.1 0.6 0.0 8.3 0.9 0.9 6.4 0.1 Decrementile)</td> <td>LT TH RT LT TH RT LT TR TR LT TR L TR</td> <td>LT TH RT LT TH RT LT TR RT LT TR RT LT TR RT LT TR RT LT TR</td> <td>LT TH RT LT TH RT LT TH RT LT TH RT LT TR L TR L TR L TR L L TR L L TR L TR L TR L L TR L L TR TA TA TA</td> <td>LT TH RT LT TR L TB 1886 230<</td>	LT TH RT LT TH RT LT L TR L TR L 0.0 0.0 0.0 0.0 0.0 233 55 63 339 14 745 1631 1389 1617 749 230 504 548 638 454 0.3 0.0 0.0 0.2 0.0 1.01 0.11 0.11 0.53 0.03 1.000 1.000 1.000 1.000 1.000 3 3 3 3 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.3 0.9 0.9 5.9 0.1 0.3 0.4 0.5 0.5 0.4 3.0 0.1 0.1 0.6 0.0 8.3 0.9 0.9 6.4 0.1 Decrementile)	LT TH RT LT TH RT LT TR TR LT TR L TR	LT TH RT LT TH RT LT TR RT LT TR RT LT TR RT LT TR RT LT TR	LT TH RT LT TH RT LT TH RT LT TH RT LT TR L TR L TR L TR L L TR L L TR L TR L TR L L TR L L TR TA TA TA	LT TH RT LT TH RT LT TH RT LT TH RT LT TH RT LT TR L TB 1886 230<

overight @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:38 AM

TASK Eng 8/8/2006 19 Input Why PHF uated (A) In the Green, e		LT 1 L 118 0	EB TH 1 TR 3	HCS+		Site Ir Interse Area T Jurisd	formation ection ype ction is Year	Rec All c Gilb Rec	ker Road Ir-2025	at Bou		ad Road P M		
TASK Eng 8/8/2006 g Input %HV PHF uated (A)		1 L 118	TH 1 TR			Interse Area I Jurisdi Analys Projec	ection type ction is Year	Rec All c Gilb Rec	ther area ert ker Road ir-2025	at Bou				
8/8/2006 N1 %HV PHF uated (A)		1 L 118	TH 1 TR			Area T Jurisdi Analys Projec	ype ction is Year	All o Gilb Rec	ther area ert ker Road ir-2025	at Bou				
8/8/2006 N1 %HV PHF uated (A)		1 L 118	TH 1 TR			Jurisdi Analys Project WB	ction is Year	Gilb Rec	ert ker Road Ir-2025	at Bou	levard f	Road PM		
%HV PHF uated (A)		1 L 118	TH 1 TR			Analys Projec WB	is Year	Rec	ker Road Ir-2025		levard F	Road PM		
%HV PHF uated (A)		1 L 118	TH 1 TR			Projec WB	l ID		ir-2025		levard F	Road PM		
%HV PHF uated (A)		1 L 118	TH 1 TR			WB			ir-2025		levard F	Road PM		
%HV PHF uated (A)		1 L 118	TH 1 TR					- 1						
%HV PHF uated (A)		1 L 118	TH 1 TR					1						
%HV PHF uated (A)		1 L 118	1 TR			TU				NB			SB	
%HV PHF uated (A)		L 118	TR							TH	RT	LT	TH	RT
PHF uated (A) In		118 0			1	1	0			2	0	1	2	
PHF uated (A) In		0	3		L	TR				R		L	TR	
PHF uated (A) In				28			189			596	74	445	945	
uated (A) In			0		0	0	0	0		0	0	0	0	7
lı		0.92	0.92	0.92	0.92	0.92	0.92	0.9		92	0.92	0.92	0.92	0.92
		A	A	A	A	A	A	A		4	Α	A	A	
ve Green, e		2.0	2.0		2.0	2.0		2.		.0		2.0	2.0	1
		2.0	2.0		2.0	2.0		2.		.0	<u> </u>	2.0	2.0	ــــــــــــــــــــــــــــــــــــــ
		3	3		3	3		3		3	<u> </u>	3	3	
		3.0	3.0		3.0	3.0	_	3.	 -	.0		3.0	3.0	
		1.000	1.00	2	1.00		0			.000		1.000	1.000	<u> </u>
nd, Qь								0.				0.0	0.0	
Volumes		<u> </u>		0	 -		0	0		0	40		0	10
		12.0	12.0		12.0	12.0		12	.0 1.	2.0		12.0	12.0	
arking		N		_ N	N	0	N	_ \ ^		2	Ν	N	0	N
, Nm			4											ــــــــــــــــــــــــــــــــــــــ
		0			0		L_		<u> </u>	0		0	0	
strians, G _p		<u> </u>	3.2			3.2				3.2			3.2	
EW Perm	WB	Only		03)4	NS P	erm	Excl	Left		07		08
G = 25.2	G = 3	3.0	G =		G =		G = 35	0	G = 10).4	G =	:	G≈	
′ = 4	Y = 0) 	Y =		Y =	·	Y = 4		Y = 0		Υ =	:	Y =	
s, T = 0.25							·		Cycle I	ength,	C = 8	1.6		OI OI
city, Control Del	ay, an	d LOS E		ation										
		i T		Рτ	1 17		I pr	+			DT	- 		
. V				N			KI	_			KI			+
ity, c		+		 		+	 							
,, -				┝╾─			 -	+						1 5
g/C				 		+	 							╁╌
				 			 						· 	
PF				 			1							+
(+			+					_	0.38	+
d ₂	———			 			 							1 7
, d ₃				 		+	+							
, - <u>J</u>				 	+	+	+							+
				-			+					_		+
					+			╁┷		1		- 		
					 			+						
					 			Inters	D					
n V a still g	/olumes /olumes /olumes Nm trians, Gp EW Perm = 25.2 = 4 , T = 0.25 ity, Control Del v y, c /C PF	/olumes /olumes /olumes /olumes /olumes Nm trians, Gp EW Perm WB = 25.2 G = 3 = 4 Y = 0 , T = 0.25 /olumes d, Qb	O	Columns O	O	Octobrol Octobrol	d, Qb	d, Qb	d, Qb	d, Qb			A	

BACK-OF-QUEUE WORKSHEET

General Information

project Description Recker Road at Boulevard Road PM Pk Hr-2025

verage Back of Queue												
44		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
ane Group	L	TR		L	TR		L	TR		L	TR	1
atial Queue/Lane	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
low Rate/Lane Group	128	33		116	208		28	685		484	1267	
tflow/Lane	1076	1641		1440	1619		680	1884		878	1846	
apacity/Lane Group	332	507		569	639		412	1539		532	1508	
Sw Ratio	0.1	0.0		0.1	0.1		0.0	0.2		0.6	0.4	
/c Ratio	0.39	0.07		0.20	0.33		0.07	0.45		0.91	0.84	
d _{actor}	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
rrival Type	3	3		3	3		3	3		3	3	
atoon Ratio	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
F Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
	2.3	0.5		1.6	3.3		0.3	5.7		5.2	13.5	
]	0.3	0.4		0.5	0.5		0.4	0.6		0.4	0.6	
]	0.2	0.0		0.1	0.2		0.0	0.5		3.0	2.6	
Average	2.5	0.6		1.7	3.5		0.3	6.2		8.2	16.0	
⇒ ercentile Back of Queue (95th	percentile)	<u> </u>	<u> </u>	·	•			· <u>I</u>				
76	2.0	2.1		2.0	2.0		2.1	1.9		1.9	1.7	
ack of Queue	5.0	1.2		3.6	7.0		0.6	11.9		15.3	28.0	
ueue Storage Ratio												
≀ueue Spacing	25.0	25.0		25.0	25.0		25.0	25.0		25.0	25.0	
ueue Storage	0	0		0	0		0	0		0	0	
verage Queue Storage Ratio												
∵3% Queue Storage Ratio												T

pyright @ 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:40 AN

•						HCS+	DE	TAILE	DRE	POR	T								
eneral Information	on										nation								
Analyst	MG								Inters		1	Reck	er Ro	at Pecos	Roa	d			. [8]
Agency or Co.	TASK Eng								Area	Spe		All ot	her a	reas					
tate Performed	8/8/2006								Jurisd	iction	ı	Gilbe	rt						-
Time Period									Analy	sis Ye	ear								<u>m</u> :
٠,									Projed	t ID		Recki Hr-20	-	ad at Pec	os R	oad A	M Pk		
olume and Timin	a lacut		-	_					<u></u>			r11-20	125						F !
Olume and Timin	у траг		T		EB		1		WE	3	<u> </u>	1		NB		~		SB	
			LT	Т	TH	RT	\dashv	LT	T _I		RT	LT		TH	R	T	LT	TH	RI
lumber of Lanes, N	J1		1	十	3	0	-1	1	3		0	1		2	0		1	2	3
Lane Group	-		1	-	TR	 	┪	.	TR		-	L		TR	H		<u>'</u>	TR	-
'v'olume, V (vph)			44	\dashv	1228	190		149	74		30	26	1	593	21	10	39	343	مسور
6 Heavy Vehicles,	D/ LIV /		0	\dashv	0	0	ᅱ	0	0	,	0	0	7	0	0		0	0	
			+	\dashv		0.92	\dashv	0.92	0.92		0.92	0.92		0.92	0.9		0.92	0.92	<u> </u>
Peak-Hour Factor, I			0.92	+	0.92		-					+			_			}	0.92
Pretimed (P) or Act			A	\dashv	A	A	4	A	A 2.0		Α	A 200		Α	Α		A	A	ALC: N
Start-up Lost Time,			2.0	_	2.0	 	_	2.0	2.0		<u> </u>	2.0		2.0	<u> </u>		2.0	2.0	1
Extension of Effecti	ve Green, e		2.0	4	2.0	 	_	2.0	2.0		<u> </u>	2.0		2.0	<u> </u>		2.0	2.0	
Arrival Type, AT			3	_	3	—	_	3	3			3	_	3	<u> </u>		3	3	10 M:
Jnit Extension, UE			3.0	4	3.0	 	_ļ	3.0	3.0			3.0		3.0	<u> </u>		3.0	3.0	<u> </u>
Filtering/Metering, I			1.000	\perp	1.000	<u> </u>	\perp	1.000	1.00	00		1.00	00	1.000	<u> </u>		1.000	1.000	1
Initial Unmet Dema	nd, Q _b		0.0		0.0			0.0	0.0			0.0		0.0			0.0	0.0	; p= 30,
ed / Bike / RTOR	Volumes		0		0	0		0	0		0	0		0	40)	0	0	10
Lane Width			12.0	Т	12.0		\neg	12.0	12.0			12.0)	12.0			12.0	12.0	013
Parking / Grade / P	arking		N	T	0	N		N	0	"	N	N		0	Ν		N	0	N
arking Maneuvers	i, Nm					T			T										,
Buses Stopping, Ne	3		0	\neg	0	\Box	\neg	0	0			0		0			0	0	7.0
Vin. Time for Pede	strians, Gp				3.2				3.	2		1		3.2				3.2	
Phasing	EW Perm	Exc	l. Left		03	3	T	04		Т	NS Perm	1	E	xcl. Left	T		07		8 📆
	G = 25.2	G = 3	3.0		G =		1	3 =		G	= 15.0		G =	5.4	1	G =		G=	- Table 1
Timina 🛏	(= 4	Y = 0)	_	Y =		+	(=		Y	= 4		Υ=	0	7	Y =		Y =	
Ouration of Analysis	s. T = 0.25	<u></u>		\neg									Cvc	le Length,	C =	56.6			Eli.
Lane Group Capa		lav. ar	d LOS	Dete	erminati	on							-,-						
,	,,	1			В				WB					NB				SB	
			LT	П	1	RT	L	T	TH		RT	LT	\Box	TH	RT		LT	TH	$\prod_{i \in I} f_i$
Adjusted Flow Rate	e, v		48	15	42		1	62	838		i	287		840			42	518	
Lane Group Capac	ity, c		426	22	58		3	57	2291			434		925			434	919	
v/c Ratio, X																	0.10	0.56	
		0.	.11	0.6	8		0.4	4 5	0.37			0.66	[4	0.91			0.70		1
*Total Green Ratio,	g/C		.11 .57	0.6 0.4			0.4		0.37 0.45	+		0.66 0.43	_+	0.91			0.43	0.27	i
	g/C	0.			5			57		+								0.27 18.0	
Total Green Ratio,		0. 9	.57	0.4	5 5		0.8 17	57	0.45			0.43		0.27			0.43		15
^k Total Green Ratio, Uniform Delay, d ₁	, PF	0. 9	.57).1	0.4 12.	5	:	0.8 17	57 7.3 000	0.45 10.4			0.43 18.6		0.27 20.1			0.43 16.7	18.0	Æ
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k	, PF	0. 9 1	.57).1 .000	0.4 12. 1.0	5 5 000 5	:	0.8 17 1.0	57 7.3 000	0.45 10.4 1.000			0.43 18.6 1.000 0.24		0.27 20.1 1.000			0.43 16.7 1.000	18.0 1.000	E
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k Incremental Delay,	, PF c d ₂	0. 9 1	.57 .000 .11 0.1	0.4 12. 1.0 0.2 0.	5 5 000 5 9	:	0.8 17 1.0 0.1	57 2.3 000 11 0.9	0.45 10.4 1.000 0.11 0.1			0.43 18.6 1.000 0.24 3.7		0.27 20.1 1.000 0.43 12.6			0.43 16.7 1.000 0.11 0.1	18.0 1.000 0.16 0.8	J.
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k Incremental Delay, Initial Queue Delay	, PF c d ₂	0.9	.57 .0.1 .000 .11 0.1	0.4 12. 1.0 0.2 0.0	5 5 000 5 9	:	0.8 17 1.0 0.1 0.1	57 2.3 000 11 0.9	0.45 10.4 1.000 0.11 0.1			0.43 18.6 1.000 0.24 3.7 0.0		0.27 20.1 1.000 0.43 12.6			0.43 16.7 1.000 0.11 0.1	18.0 1.000 0.16 0.8 0.0	
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, l Incremental Delay, initial Queue Delay Control Delay	, PF c d ₂	0. 9 1 0.	.57 .000 .11 0.1 0.0 9.3	0.4 12. 1.0 0.2 0. 0.0	5 5 000 5 9 0.4	· · ·	0.5 17 1.0 0.1 0.1	57 2.3 000 111 0.9 0	0.45 10.4 1.000 0.11 0.1 0.0 10.5			0.43 18.6 1.000 0.24 3.7 0.0		0.27 20.1 1.000 0.43 12.6 0.0			0.43 16.7 1.000 0.11 0.1 0.0 16.8	18.0 1.000 0.16 0.8 0.0 18.8	
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k Incremental Delay, initial Queue Delay Control Delay Lane Group LOS	, PF c d ₂	0. 9 1 0.	.57 .000 .11 .0.1 .0.1 .0.0 9.3 A	0.4 12. 1.0 0.2 0. 0.6 13	5 5 000 5 9 0.4		0.8 17 1.0 0.1 0.1	57 3 0000 11 0.9 0 8.2	0.45 10.4 1.000 0.11 0.1 0.0 10.5 B			0.43 18.6 1.000 0.24 3.7 0.0		0.27 20.1 1.000 0.43 12.6 0.0 32.8			0.43 16.7 1.000 0.11 0.1 0.0 16.8	18.0 1.000 0.16 0.8 0.0 18.8 B	
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k Incremental Delay, initial Queue Delay Control Delay Lane Group LOS Approach Delay	, PF c d ₂	0. 9 1 0.	.57 0.1 .000 .11 0.1 0.0 9.3 A	0.4 12. 1.0 0.2 0.0 13 B	5 5 000 5 9 0.4		0.5 17 1.0 0.1 0.1	57 .3 0000 111 0.9 0 8.2 3	0.45 10.4 1.000 0.11 0.1 0.0 10.5 B			0.43 18.6 1.000 0.24 3.7 0.0	30.1	0.27 20.1 1.000 0.43 12.6 0.0 32.8			0.43 16.7 1.000 0.11 0.1 0.0 16.8	18.0 1.000 0.16 0.8 0.0 18.8 B	
Total Green Ratio, Uniform Delay, d ₁ Progression Factor Delay Calibration, k Incremental Delay, initial Queue Delay Control Delay Lane Group LOS	, PF c d ₂	0. 9 1 0.	.57 .000 .11 .0.1 .0.1 .0.0 9.3 A	0.4 12. 1.0 0.2 0. 0.6 13 B	5 5 000 5 9 0.4		0.5 17 1.0 0.1 0.1	57 3 0000 11 0.9 0 8.2	0.45 10.4 1.000 0.11 0.1 0.0 10.5 B			0.43 18.6 1.000 0.24 3.7 0.0	30.1 C	0.27 20.1 1.000 0.43 12.6 0.0 32.8			0.43 16.7 1.000 0.11 0.1 0.0 16.8	18.0 1.000 0.16 0.8 0.0 18.8 B	

BACK-OF-QUEUE WORKSHEET Seneral Information Soject Description Recker Road at Pecos Road AM Pk Hr-2025 ส่งerage Back of Queue EB WB NB LT LT TH TH RΤ RT TH RT LT TH RT L L TR ane Group TR L TR L TR I'' Itial Queue/Lane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Flow Rate/Lane Group 48 1542 162 838 287 840 518 42 tflow/Lane 1888 750 1861 629 1007 1834 1007 1820 Capacity/Lane Group 2291 426 2258 357 434 925 434 919 bw Ratio 0.1 0.3 0.3 0.2 0.3 0.2 0.0 0.1 0.11 0.37 //c Ratio 0.68 0.45 0.66 0.91 0.10 0.56 Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Arrival Type 3 3 3 3 3 3 3 3 latoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ೌF Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.3 7.1 1.2 3.2 2.9 6.7 0.4 3.7 0.3 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.0 1.0 0.2 0.3 0.6 2.4 0.0 0.4 0.4 Average 8.1 1.4 3.5 3.5 9.1 0.4 4.1 Percentile Back of Queue (95th percentile) 2.1 1.9 2.0 2.0 1.9 2.0 Back of Queue 0.8 15.2 2.9 6.9 6.9 16.9 0.9 8.2 Gueue Storage Ratio 25.0 25.0 Queue Spacing 25.0 25.0 25.0 25.0 25.0 25.0 peue Storage 0 0 0 0 0 0 0 0 verage Queue Storage Ratio ∏% Queue Storage Ratio

opyright © 2005 University of Florida, All Rights Reserved

HCS+™ Version 5.2

Generated: 11/8/2006 5:40 AN

anami inform	ation				псэ+	DETAIL	ED REP	ormation						
eneral Informa	····						Intersed			er Rd at Peco	s Road			
Analyst	MG TASK Eng						Area Ty			her areas	75 7 1000			
Agency or Co.	•						Jurisdic	•	Gilbe					
ate Performed	8/8/2006						Analysi		0,,50	-,				10 :
rime Period							1		Reck	er Road at Pi	ecos Roa	ad PM Pk		
							Project	1D	Hr-20	025				
olume and Tin	ning Input													
			<u> </u>	EB			WB			NB			SB	
lumber of Lane	- NI		LT	TH 3	RT 0	LT 1	TH 3	RT 0	L7	TH 2	RT	LT 1	TH 2	RT.
	5, 111		1			<u> </u>	TR	- °	+ +	TR	+ -	- '		1 6
Lane Group			L	TR							405		TR	+
'/olume, V (vph)	0/10		115	896	232	238	1355				125		613	
% Heavy Vehicle			0	0	0	0	0	0	0	0	0	0	0	5
Peak-Hour Facto			0.92	0.92	0.92	0.92	0.92	0.92			0.92		0.92	0.92
Pretimed (P) or /			A	A	A	A	A	-	A	A	A	A	A	1-2
Start-up Lost Tin			2.0	2.0	_	2.0	2.0	_ _	2.0			2.0	2.0	
Extension of Effe	ective Green, e		2.0	2.0		2.0	2.0		2.0			2.0	2.0	
Arrival Type, AT			3	3		3	3		3	3		3	3	1
Unit Extension, l			3.0	3.0		3.0	3.0		3.0			3.0	3.0	
Filtering/Meterin			1.000	1.000		1.000			1.0		→—	1.000	1.000	44
Initial Unmet De			0.0	0.0		0.0	0.0		0.0			0.0	0.0	
Ped / Bike / RTC	R Volumes		0	0	0	0	0	<u> </u>	0	0	40	0	0	10
Lane Width			12.0	12.0		12.0	12.0		12.0			12.0	12.0	
Parking / Grade			N	0	N		0	N		0	N	N	0	N
Parking Maneuv					_									┸₹┈
Buses Stopping,			0	0		0	, 0					0	0	<u> </u>
Min. Time for Pe	destrians, G _P		<u> </u>	3.2			3.2			3.2			3.2	
Phasing	EW Perm	E	xcl. Left		03	0	4	NS P	erm	Excl. Left		07		08
Timing	G = 25.2	G =	3.0	G≓		G =		G = 15	.0	G = 5.4) = 	G =	
	Y = 4	Y =	0	Y =		Y =		Y = 4		Y = 0		=	Y =	
Duration of Anal	ysis, T = 0.25			<u> </u>		<u></u>				Cycle Lengt	h, C =	56.6		
Lane Group Ca	pacity, Control D	elay,	and LOS		ation									
			LT	EB TH	RT	LT	WB TH	RT	LT	NB TH	RT	LT	SB TH	1 (
Adjusted Flow R	ate. v		125	1226	17.1	259	1543	 '`'	277	608	+ '``	28	755	╅┷
Lane Group Cap			357	2233		357	2288	+	434	937	1	434	942	+
v/c Ratio, X	,, •		0.35	0.55		0.73	0.67	 	0.64	0.65	+	0.06	0.80	+-[-]
Total Green Rat	io. a/C		0.57	0.45		0.57	0.45	 	0.43	0.27	+	0.43	0.27	+=
Uniform Delay, o			16.2	11.5		18.5	12.4	+	19.6	18.5	+	15.3	19.4	F-13
Progression Fac			1.000	1.000		1.000	1.000	+	1.000		+	1,000	1.000	
Delay Calibration			0.11	0.15		0.29	0.25	 	0.22	0.23	+-	0.11	0.35	+
Incremental Del			0.11	0.13		7.2	0.23	1-	3.1	1.6	+	0.11	5.0	1
Initial Queue De			0.0	0.0		0.0	0.0	+	0.0	0.0	+-	0.0	0.0	╅╾┸
Control Delay	nay, ug					25.7	13.2	+-	22.7	20.1	+	15.4	24.5	+
			16.8	11.8			+	 			+			┸
Lane Group LOS			B	В	L	C	B	1	С	C		В	C 24.4	
Approach Delay			- 12.			1	5.0			20.9		- -	24.1	
Annecach														ĸ :
Approach LOS Intersection Del			B 16.				B 0.86		1	C ection LOS			C B	

BACK-OF-QUEUE WORKSHEET Seneral Information Project Description Recker Road at Pecos Road PM Pk Hr-2025 Nverage Back of Queue EΒ WB NB SB TH RT LT LT TH RT LT TH RT LT TH RT L TR L TR L TR ane Group L TR 0.0 tial Queue/Lane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 125 1226 259 1543 75**5** low Rate/Lane Group 277 608 28 Titflow/Lane 629 1841 629 1886 1007 1856 1007 1866 >apacity/Lane Group 357 2233 357 2288 434 937 434 942 ∐ow Ratio 0.2 0.2 0.4 0.3 0.3 0.2 0.2 0.0 r/c Ratio 0.35 0.55 0.73 0.67 0.64 0.65 0.06 0.80 actor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 3 3 3 3 trrival Type 3 3 3 3 ⊒atoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ∍F Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.9 5.2 1.9 7.1 2.8 4.5 0.3 5.8 0.3 0.5 0.3 0.5 0.3 0.3 0.3 0.3 0.6 0.7 0.9 يآر 0.2 0.5 0.6 0.0 1.3 1.0 5.8 2.6 8.0 3.3 5. **1** 0.3 7.1 Average Percentile Back of Queue (95th percentile) 2.1 1.9 2.0 1.9 2.0 2.0 2.1 1.9 2.1 11.1 **Back of Queue** 5.3 15.1 6.6 9.9 0.6 13.5 ueue Storage Ratio 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 Queue Spacing

0

0

opyright @ 2005 University of Florida, All Rights Reserved

0

0

ueue Storage

\verage Queue Storage Ratio

HCS+™ Version 5.2

0

0

Generated: 11/8/2006 5:40 AN

0

0

MAG Trip Distribution Wednesday, August 2, 2006 Version 1.3.0 9:24 AM Project Name: Cooley Station Project Location: Gilbert, AZ Analyst: SAD Location of Site: TAZ 1562 Development Type being Analyzed: Residential and Employment 47.0% Weighted Employment Forecast Year: 2020 Distance Out from Site (miles): 3 NNW NNE Bearing % of Trips 24.1% 17.5% NWW NEE NNE 17.5% 5.0% NEE 27.9% 5.0% SEE 1.0% SSE 3.2% SSW 2.2% 19.1% 1.0% SWW 19.1% NWW 27.9% SWW SEE NNW 24.1% 2.2% 3.2% SSE SSW 20 2 15 Santa-r ,21 3 Rom 10 William Fulch .10 Peron

APPENDIX C:
ADJACENT TRIP GENERATION

3

d

F

T	1 0121	220 I M In AM Out I'M In I'M Out	228 1 0 2 4	
Trip Rates	it L.U.C. Daily Rate AM Rate PM Rate 12, 12, AM 19, 12, BM	412 2.28 0.01 0.06 80% 41%		
	ts Acres Amou	es 100 100	100	
	rcel # TCID Parcel Type Unit	1 295 Park Acres	Sum of DUs	
Adjacent Park	TAZ Pa	-		

Γ	<u>ا</u>	[_		
	PM Out	307	531	838
	PM In	569	490	1,060
T-4-1	AM Out	576	95	671
	AM In	144	149	293
	eekday	9,492	1,005	20,497
-	In PM W	65%	48%	
	γ γ	-	-	
g	8	\downarrow	61%	
Trip Rat	PM Rate	0.62	4.86	
	AM Rate	1.51	9	
	Daily Rate	7/.0	95.70	
L	-	+	\downarrow	
	1 L.U.	1	070	_
	Amoun	11,415	7/1017	
	Acres (10.2		_4
	Units	TGGE	Total	3
	Peridential	Ommercial	:15	
		298		
	Parcel #	Ommercial		
Dibella	TAZ	2		

T-4-1	1 0121	Weekday AM In AM Out PM In PM Out	\vdash	+	2,052 339 153 269 67	
Trip Rates	D. I. D. A. L. L. A. B.	Dally Kate AM Kate FM Rate % In AM % In PM	1.71 0.41 0.28 69% 80%	$\left \right $		
Adjacent Existing High School	TAZ Parcel # TC ID Parcel Tyne Units Acres Amount 1 17 C	1 200 Time School Garden Avice Aminum Liver.	1 302 High School Students NA 1200 530			

APPENDIX D: ADJACENT PRODUCTIONS AND ATTRACTIONS

1

	PM Out	4		7	
	PM In	,	,	2	
Total	AM O	C	,	c	,
	AM In	_		_	
	Weekday	228		228	
	PM Out	0		0	The second name of the second
	PM In	0		0	
Frip Rates	AM Out	0		0	
	AM In	0		0	
	Weekday	0		0	
	% Attractions	%001			
	Amount	200	١	001	
	Acres	100			•
	Units	Acres	, A. C.	DOS	
	Parcel Type	Park			
	TCID	295			
Park	Parcel#	1			
Adjacent l	TAZ	1			

Dibella									Ξ	I rip Productions	ns ns			Trip	Trip Attractions	50	
TAZ	Parcel #	TCD	Parcel Type	Units	Acres	Amount	Amount % Attractions Weekday AM In	Weekday	AM In	AM Out PM In	M In	PM Out	PM Out Wenkday AM In AM Out PM In PM Out	AM In	AM Out	PM In	PM O.
_	Residentia	300	Residential	DUs	56.5	1,413	5%	9,017	137	547	541	291	475	7	29	28	12
2	Commercial 298	al 298	Commercial	TGSF	19.3	210.177	20%	5,502	74	48	245	266	5,502	74	48	245	266
			Sum of DU	r DUs		0		14,520	211	595	984	557	5,977	82	92	274	281
							•										
Adjacen	Adjacent Existing High School	igh Scho	lo						Tri	Trip Productions	lis.			Trip	Trip Attractions	ns	
TAZ	Parcel#	Н	IC ID Parcel Type	Units	Acres .	Amount	i % Attractions Weekday	Weekday	AM In	AM Out PM In PM Out Weekday AM In AM Out PM In	PM In	PM Out	Weekday	AM In	AM Out	PM In	PM Out
	_	302	High School	Students	Α̈́N	1200	%58	308	51	23	40	Ç	1 744	000	000	320	-5

289

Adjacent Productions and Attractions

APPENDIX E:

FLORIDA DEPARTMENT OF TRANSPORTATION QUALITY/LEVEL OF SERVICE HANDBOOK

§ Quality/Level of Service

HANDBOOK

State of Florida Department of Transportation 2002

Handbook used for roadway planning and preliminary engineering analyses

This Handbook successfully combines the nation's leading automobile, bicycle, pedestrian, and bus evaluation techniques into a common analysis process.

EXECUTIVE SUMMARY

This Quality/Level of Service Handbook and its accompanying software are intended to be used by engineers, planners, and decision-makers in the development and review of roadway users' quality/level of service (Q/LOS) at planning and preliminary engineering levels. This Handbook provides tools to quantify multimodal transportation service inside the roadway environment (essentially inside the right-of-way).

These updated methods provide the first successful multimodal approach unifying the nation's leading automobile, bicycle, pedestrian and bus Q/LOS evaluation techniques into a common transportation analysis at facility and segment levels. With these professionally accepted techniques, analysts can now easily evaluate roadways from a multimodal perspective, which result in better multimodal decisions for projects in planning and preliminary engineering phases.

Two levels of analysis are included in this Handbook: (1) "generalized" planning and (2) "conceptual" planning. Generalized planning makes extensive use of statewide default values and is intended for broad applications such as statewide analyses, initial problem identification, and future year analyses. Conceptual planning is increasingly more detailed and accurate than generalized planning, but does not involve comprehensive operational analyses.

Generalized planning is most appropriate when a quick, "in the ball park" determination of LOS is needed. Florida's Generalized Tables found in this Handbook are the primary tools for conducting this type of planning analysis. The default values used for the Generalized Tables have been extensively researched and represent the most appropriate statewide values.

Conceptual planning is best suited for obtaining a solid determination of the LOS of a facility. Examples of conceptual planning are preliminary engineering applications, such as determining the design concept and scope for a facility (e.g., 4 through lanes with a raised median and bicycle lane), conducting alternatives analyses (e.g., 4 through lanes undivided versus 2 through lanes with a two-way left turn lane), and determining needs when a generalized planning approach is simply not accurate enough. Florida's LOS software (LOSPLAN),

Implementation schedule

which includes ARTPLAN, FREEPLAN, and HIGHPLAN, is the easy to use tool for conducting these types of evaluations.

The techniques contained in this Handbook and the accompanying software are to be implemented immediately. After September 1, 2002, FDOT will not accept analyses using methods, techniques, volumes, or generalized tables from previous versions of this Handbook.

The most significant difference in this Handbook from previous editions is the multimodal perspective. In addition to traditional "highway" (automobile and truck) LOS analysis, state-of-the-art techniques are now provided allowing a simultaneous evaluation of the LOS for bicyclists, pedestrians, and buses. Although LOS techniques are provided for each roadway mode, FDOT recommends against combining their LOS into one overall roadway LOS. Other significant changes include a new freeway facility planning technique and completely updated software.

The updated methodologies are planning and preliminary engineering applications from the following primary resource documents and analytical techniques using actual Florida roadway, traffic and signalization data:

- 2000 Highway Capacity Manual (HCM2000) methodologies for automobiles and trucks;
- 1999 Transit Capacity and Quality of Service Manual (TCOSM) for buses;
- Bicycle LOS Model, the most used technique in the U.S. to evaluate LOS for bicyclists; and
- Pedestrian LOS Model, the most advanced technique in the U.S. to evaluate LOS for pedestrians.

Also included are Florida's Statewide Minimum LOS Standards for the State Highway System. These standards are required for use on Florida Intrastate Highway System (FIHS) routes.

In order to make future editions of this Handbook and accompanying software even better, FDOT welcomes your review comments and suggestions. Chapter 8 contains a user survey and a software "bug" report form.

Handbook changes

Multimodal perspective includes bicycles, pedestrians, and buses as well as automobiles.

New freeway facility planning technique and updated software

Analytical methodologies for automobiles, bicycles, pedestrians, and buses.

Florida's LOS standards

User feedback

Comments and suggestions are welcome.

Implementation schedule

Handbook changes

Multimodal perspective includes bicycles, pedestrians, and buses as well as automobiles.

New freeway facility planning technique and updated software

Analytical methodologies for automobiles, bicycles, pedestrians, and buses.

Florida's LOS standards

User feedback

Comments and suggestions are welcome.

which includes ARTPLAN, FREEPLAN, and HIGHPLAN, is the easy to use tool for conducting these types of evaluations.

The techniques contained in this Handbook and the accompanying software are to be implemented immediately. After September 1, 2002, FDOT will not accept analyses using methods, techniques, volumes, or generalized tables from previous versions of this Handbook.

The most significant difference in this Handbook from previous editions is the multimodal perspective. In addition to traditional "highway" (automobile and truck) LOS analysis, state-of-the-art techniques are now provided allowing a simultaneous evaluation of the LOS for bicyclists, pedestrians, and buses. Although LOS techniques are provided for each roadway mode, FDOT recommends against combining their LOS into one overall roadway LOS. Other significant changes include a new freeway facility planning technique and completely updated software.

The updated methodologies are planning and preliminary engineering applications from the following primary resource documents and analytical techniques using actual Florida roadway, traffic and signalization data:

- 2000 Highway Capacity Manual (HCM2000) methodologies for automobiles and trucks;
- 1999 Transit Capacity and Quality of Service Manual (TCOSM) for buses:
- Bicycle LOS Model, the most used technique in the U.S. to evaluate LOS for bicyclists; and
- Pedestrian LOS Model, the most advanced technique in the U.S. to evaluate LOS for pedestrians.

Also included are Florida's Statewide Minimum LOS Standards for the State Highway System. These standards are required for use on Florida Intrastate Highway System (FIHS) routes.

In order to make future editions of this Handbook and accompanying software even better, FDOT welcomes your review comments and suggestions. Chapter 8 contains a user survey and a software "bug" report form.

GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S **URBANIZED AREAS***

	UNIN	TERRU	PTED FLO	W HIGH	WAYS				F	REEWAYS	3		
				vel of Serv		Ì	Interchang	se spacing ≥ 2 r					
	Divided Undivided	A 2,000	В	C	D	E 27.000	T			vel of Servi		7-	
2	Divided	20,400	7,000 33,000	13,800 47,800	19,600 61,800	27,000 70,200	Lanes 4	A 23,800	B 39,600	C 55,200	D 67,100	E 74,600	1
6	Divided	30,500	49,500	71,600	92,700	105,400	6	36,900	61,100	85,300	103,600	115,300	1
			VO-WAY				8	49,900	82,700	115,300	140,200	156,000	
Class	I (>0.00 to 1.						10	63,000	104,200	145,500	176,900	196,400	
	•	_		vel of Serv		1	12	75,900	125,800	175,500	213,500	237,100	1
	Divided	A	В	С	D	E							1
2	Undivided	**	4,200	13,800	16,400	16,900	Interchang	ge spacing < 2 :					
4 6	Divided Divided	4,800 7,300	29,300	34,700	35,700	***	Lanes		B Le	vel of Servi		1	1
8	Divided Divided	9,400	44,700 58,000	52,100 65,100	53,500 67,800	***	4	A 2 2, 000	36,000	C 52,000	D 67,200	E 76,500	
٥	Dividod	2,100	20,000		07,000	1	6	34,800	56,500	81,700	105,800	120,200	
Class	II (2.00 to 4.	50 signal	ized interse	ctions per	mile)		8	47,500	77,000	111,400	144,300	163,900	
				evel of Ser			10	60,200	97,500	141,200	182,600	207,600	1
	Divided	A **	В	C	D	E	12	72,900	118,100	170,900	221,100	251,200	
2	Undivided		1,900	11,200	15,400	16,300							
4 6	Divided Divided	**	4,100	26,000	32,700	34,500			DIC	T/CT 13 3.50	NT-10		
8	Divided Divided	**	6,500 8,500	40,300 53,300	49,200 63,800	51,800 67,000	(Note: Le	vel of service f		YCLE MO		haced on ma	d eres r
ľ	DIVIDU		0,200	2000	03,000	07,000		s at 40 mph po					
Class	III (more tha	n 4.5 sign	nalized inte	rsections p	er mile and	1 not		facility.) (Mult					
			ty central b		rict of an		of direction	onal roadway la	mes to deter	mine two-v	vay maximu	ın service vo	dumes.)
	mbanize	d area ov	er 750,000))		1	٠.	~· · · ·					
			т.	evel of Ser	3			Shoulder/			T1 a.f.Cla.		
Lane	s Divided	A	В	C C	D	B		cle Lane verage	A	В	Level of Se C	D	Е
2	Undivided	**	**	5,300	12,600	15,500		49%	**	**	3,200	13,800	>13,800
4	Divided	**	**	12,400	28,900	32,800		0-84%	**	2,500	4,100	>4,100	***
6	Divided	**	**	19,500	44,700	49,300	85	-100%	3,100	7,200	>7,200	***	***
8	Divided	**	**	25,800	58,700	63,800			Toleran v	10mm + 111	ron.		
Class	: IV (more tha	m 4 5 rio	nalizad inte	errections t	or mile m	d within	(Note: Le	vel of service		ESTRIAN I		e ic based on	roadumy
CIAS			ral business					s at 40 mph po					
l	over 750							facility.) (Mult					
1				evel of Ser			directions	l roadway lane	es to determ				mes.)
	s Divided	A. **	B **	C	D	E		.			Level of Se		_
2 4	Undivided Divided	**	**	5,200 12,300	13,700 30,300	15,000 31,700		lk Coverage 1-49%	A **	B **	C **	D 6,400	E 15,500
6	Divided	**	**	19,100	45,800	47,600		0-84%	**	**	**	9,900	19,000
8	Divided	**	**	25,900	59,900	62,200	•	-100%	**	2,200	11,300	>11,300	***
		-					1			*	•	•	
			TATE RO				l	E	BUS MODE	E (Schedule	d Fixed Rou	ite)	
1			City/Count		2		(Notes Dec.	s per hour shown at		Buses per ho		m nëtha bisha- t	meta flore \
1	s Divided	A	Level of Se B	rvice C	D	E	(Lines: DIEC	a her mont suomy so	comploring p	ear dom in the	Level of Se		BLIE HOW.)
2	Undivided		**	9,100	14,600	15,600	Sidewa	lk Coverage	A	В	C	D	E
4	Divided	**	**	21,400	31,100	32,900)-84% ·	**	>5	≥4	≥3	≥2
6	Divided	**	**	33,400	46,800	49,300	85-	-100%	>6	>4	≥3	≥2	≥1
1								ARTERIA	NON-ST	ATE ROAT	DWAY AD	JUSTMENT	rs
•			Signalized				İ			DED/UNDI			
			ed intersec		is)		1.				the indicate		
1.	To: !! !		Level of Se		-	+	Lanes	Median		ims Lanes	A	Adjustment F	actors
Lane 2	es Divided Undivided	A. **	B **	C 4,800	D 10,000	B 12,600	2 2	Divided Undivided		Yes No		+5% -20%	
4	Divided	**	**	11,100	21,700	25,200	Multi	Undivided		Yes		-20% -5%	
							Multi	Undivided		No		-25%	
Sou			ment of Tr	ansportatio	n.	02/22/02		OTH ATOM				-2270	
1			ing Office Street, MS	19			1		ONE	-WAY FAC	HITTES		
			L 32399-0				De	crease corresp				this table by	40% to
hi	p://www11.m				vsm/los/de	fault.htm		obtain the equi					
•71	ds table does not o	onstitute a s	da bes brabest	ould be used o	nly for genera	l planning appl		imputer models from					
								where more refine					

This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and dariving computer models should not be used for comider or intersection design, where more refined techniques exist. Values shown are two-way annual average daily volumes (based on X_{low} facture) for levels of service and are fir the automobile/track modes unless specifically stated. Level of service letter grade thresholds are probably not comparable serous modes and, therefore, cross model comparisons should be made with caution. Furthermore, combining levels of service in different modes into one overall madeway level of service is not recommended. The table's imput value definits and level of service criteria appear on the following page. Calculations are based on planning applications of the Highway Capacity Mannal, Bicycle LOS Model, Pedestrian LOS Model and Transit Capacity and Quality of Service Mannal, respectively for the automobile/track, bicycle, pedestrian and bus modes.

**Cannot be achieved using table input whee defaults.

**Cannot be achieved using table input whee defaults.

**Cannot be achieved using table input whee defaults for bicycle and pedestrian modes, the level of service letter grade (including F) is not achievable, because there is no maximum vehicle volume threshold using table input value defaults.

TABLE 4 - 1 (continued) GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S

Urbanized Areas

INPUT VALUE ASSUMPTIONS

		UNINTERRUPTED FLOW FACILITIES	LOW FACILITIES	
	aar <u>a</u>	Елентара	ngin .	Highways
ROADWAY CHARACATERISTICS	Class III	Class IV		
Number of through lance	4-12	4-12	2	4-6
Posted speed (mph)	65	55	90	50
Free flow speed (mpli)	7.0	09	55	55
Basio segmont length (mi)	1.5	0		
Interchange specing per unife	2.5	1		
Median (n,y)			п	У
Left turn hance (a,y)			у	y
Tecrain (r, l)		1	_	-
% по ряввіщу 2000			80	
Passing lanca (n,y)			п	
TRAITTIC CHARACTERISTICS				
Pisuning analysis hour factor (K)	0.097	0.093	0.095	0.095
Directional distribution factor (D)	0.55	0.55	0.55	0.55
Peak hour factor (PIIF)	0.95	0.95	0.925	0,925
Base copacity (pophpl)			1700	2100
Heavy veluole percent	6.0	4.0	2.0	2.0
Local adjustment factor	86'0	00.1	1.0	1,0

						4 -1 -10			INTER	KULLIN	INTERNALIED FLOW BACILLIES	CHIALIUS CHIALIUS		Non Glate Deschare	O conference	Diesenla	Padestring	Ä
						State Arteria	_							TOTAL STRICE	COMITMENT	Dieze	T CHEST THE	Pa
ROADWAY CHARACTERISTICS		Class 3			Class			Class III		1	Clair IV		Major City/County	y/County	Other Signalized	Class II	Claus II	
Number of through Janes	7	4-6	80	2	4-6	100	2	4-6	8	2	9-4	C C	2	4-6	2-4	4	4	
Posted sneed (mph)	24	8	25	£	\$	45	35	35	35	£	೯	೯	45	45		\$	\$	
Free flow speed (mpli)	20	55	23	8	S.	20	40	40	40	35	35	35	50	50		45	45	
Median type (n.ur.r)	z	-	-	R	_	-	п	1	r	а	ы	-	п	ь		-	1	
Left tren lance (n.v)	¥	>	^	>	>	٨	Å	χ	À	y	λ	Y	у.	у	у	χ	λ	
Paved shoulder/blovele lane (n.v)																n,50%,y	п	
Outside lane width (n,t,w)																-		
Pavement condition (u.t.d)												1						
Sidewalk (n,y)												1					n,50%,y	À
Sidowallo/roadway separation (a,t,w)																	-	
Sidewalk/roadway protective barrier (n,y)										+							п	
Obstacle to bus stop (n,y)																		-
TRAITIC CHARACTERISTICS											-							
Planning analysis hour factor (K)	0.095	0.095	0,095	0.095	0.095	0.095	0.005	2600	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	0.095	
Directional distribution factor (D)	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	
Peak lour factor (PER)	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	0.925	
Base saturation flow rate (nonhpl)	1900	1900	1900	1900	1900	1900	1960	1900	1900	1900	1900	1900	1900	1900	1900	1900	0061	
Heavy vehicle percent	2,0	2.0	2.0	2,0	5.0	2.0	1.5	1.5	1.5	1.5	1.5	5.	1.5	1.5	1.0	2.0	2.0	
Local adjustment factor	0.1	9:	0.95	0.98	96'0	9.95	0.95	0.95	0.92	0.92	0.92	8	96'0	86.0	0.95	0.98	0.98	
% turus from exclusive turn lanes	12	12	13	12	12	12	12	27	12	12	12	12	ž	7	91	12	12	
us span of service								1		1	- 							2
CONTROL CHARACTERISTICS																		
Signalized Intersoctions por mile	1.5	1:0	1.0	3.0	3.0	3.0	5.0	5.0	5.0	0.0	8.0	8.0	3.0	3.0		3.0	3.0	
Arrival typo (1-6)	3	F	5	4	4	4	*	4	4	4	4	7	4	4	3	÷	4	
Slunal tone (a # P)	-				150						10	9		10	æ		80	
Carla Impeli (C)	120	120	120	130	120	82	120	120	120	120	120	120	120	120	120	120	120	
0,7	3		0.44	27.0	7770	0.44	0.44	0 44	0.44	40	44.0	44.0	0,41	0.41	0.31	0.44	0,44	

LEVEL OF SERVICE THRESHOLDS

٦		_	_			Т	T	٦	\neg	
Bus		Buses per hr.	9 ^	>4	> 3	5	7,	~	⊽	
Pedentrian		Score	5.1.5	≤2.5	<3.5		C.4.2	<5.5	> 5.5	
Dicycle		Score	< 1.5	22.5	35		C#2	< 5.5	> 5.5	
Roadways	Other Signalized	Control Delay	< 10 sec	< 20 sec	< 45 #ec		< 55 8ed		> 80 aeu	
Nun-State Roadways	Major City/County	VIS	> 35 tapils	> 28 mpl	> 22 mpl		> 17 mp/t	> 13 mpli	<13 mh	
	Class IV	ATS	> 25 mph	> 19 mplt	V 13 mil		小	>7 mph	<7月6	
ny Arterials	Class II Cleas III Cles	ATS	> 30 mph	× 24 mil	1 18 mil		> 14 triph	10日人	< 10 mph	
Sinte Two-W	Class II	ATS	> 35 mpli	> 28 mph	7.77 mmls	7	> 17 mpb	> 13 mmb	< 13 mph	
	Class I	ATS	> 42 mp/s	> 34 mnh	1	10mm 17	> 21 mph	> 16moh	< 16 mol	
	Multilans	Density	Ī	81.4	1	3/1	<35	×41	144	
Hiphways	Multi	0/A	< 0.20	< D.47		80.5/1	> 0.88	8	2	
	Two-Lane	% нтя	>0017	>0 843	200	V./30	> 0.667	> 0 583	< 0 583	200
	Year TV	History	1112	1		< 20	<35	745	> 45	200
20.00		9/1	0.00	100	14.5	< 0.08	< 0.88	8	8 8	00.1
Treewo	E.	Demeiler			2	97 V	< 35	1	347	-
		9/,	2007	100	55	× 0.74	< 0.90	5	3 2	3
	Town OF	Samina		=		U	6			4

98

TABLE 4 - 2

GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S **AREAS TRANSITIONING INTO URBANIZED AREAS OR** AREAS OVER 5,000 NOT IN URBANIZED AREAS*

	UNII	TERRUP	TED FLOY	W HIGHW	'AYS			F	REEWAY	S		
4 Di	ivided Individed rivided rivided	A 2,100 18,600 27,900	Ler B 6,900 30,200 45,200	vel of Servi C 12,900 43,600 65,500	D 18,200 56,500 84,700	E 24,900 64,200 96,200	Lanes 4 6 8 10	A 23,500 36,400 49,100 61,800	B 38,700 59,800 80,900 101,800	evel of Servi C 52,500 81,100 109,600 138,400	D 62,200 96,000 129,800 163,800	E 69,100 106,700 144,400 182,000
Class I (>	8>0.00 to 1.99			RTERIAL ns per mile)				BIO	CYCLE MO)DE		
4 D	ivided Individed Pivided Pivided	A ** 4,600 6,900	Le B 4,000 27,900 42,800	evel of Servi C 13,100 32,800 49,300	D 15,500 34,200 51,400	E 16,300 *** ***	(Note: Level of ser geometrics at 40 m bicyclists using the below by number of maximum service w	ph posted spec facility.) (Mu of directional re	ed and traffi ltiply motor	c conditions,	, not numbe volumes sh	r of lown
Lanes D 2 U 4 D 6 D	Individed bivided bivided	A ** **	Le B ** 3,700 6,000	evel of Servi C 10,500 24,400 38,000	D 14,500 30,600 46,100	E 15,300 32,200 48,400	Paved Shoulder/ Bicycle Lane Coverage 0-49% 50-84% 85-100%	A ** ** 3,200 PEDI	L B 1,900 2,500 7,100 ESTRIAN 1	evel of Servi C 3,300 4,000 >7,100 MODE	D 13,600 >4,000 ***	E >13,600 *** ***
Class III	(more than	1.5 signaliz	ed intersecti	ions per mil	le)	1	(Note: Level of sea	ration for the me	dectrian mo	nde in this ta	hle is based	l on
4 D	ivided Individed Divided Divided	A ** **	Le B ** **	evel of Servi C 5,000 11,700 18,400	D 11,800 27,200 42,100	E 14,600 30,800 46,300	roadway geometric of pedestrians usin by number of direct service volumes.)	at 40 mph po g the facility.)	sted speed a (Multiply r	and traffic co notorized ve	onditions, no hicle volum	ot number ies shown
				•	•		7.7.7			Level of Serv		
			FATE ROA				% Sidewalk Covera 0-49% 50-84% 85-100%	ge A ** **	B ** ** 2,200	C ** ** 11,200	D 6,300 9,800 >11,200	E 15,400 18,800 ***
4 D	Divided Individed Divided Divided	A ** **	Le B ** **	evel of Serv C 7,000 16,400 25,700	D 13,600 29,300 44,100	E 14,600 30,900 46,400	ARTERI	IAL/NON-ST. DIVI Median	DED/UND			TS nent Factor
0 1), i i i i i i i i i i i i i i i i i i i		Signalized R ed intersection	·	·	70,700	2 2 Multi	Divided Undivided Undivided	Don	Yes No Yes	4	+5% 20% -5%
	Divided Undivided Divided	A ** **	B ** **	evel of Serv C 4,400 10,300	vice D 9,400 20,200	E 12,000 24,000	Multi :	Undivided	-WAY FAC	No		25%
Source:	p://www11.1	Systems 605 Suw Tallahass	Planning Or annee Street see, FL 323	at, MS 19 199-0450		02/22/02	Decrease corre obtain the e	esponding two quivalent one			-	•

This table does not constitute a standard and should be used on our different planning applications. The table and deriving computer models should not be used for contridor or intersection design, when more refined techniques exist. Values shown are two-way annual average daily volumes (based on K₁₀₀ factors) for levels of service and are for the submobile/track modes unless specifically stated. Level of service letter grade thresholds are probably not comparable across modes and, therefore, more model comparables across abould be made with cantion. Furthermore, combining levels of service of different modes into one overall madway level of service is not recommended. The table's input value defaults and level of service in the following page. Calculations are based on planning applications of the Highway Capacity Manual, Bicycle LOS Model, and Pedestrian LOS Model, respectively for the attention of the Highway Capacity Manual, Bicycle LOS Model, and Pedestrian LOS Model, respectively for the antomobile/track bicycle and pedestrian modes.

**Cannot be achieved using table input value defaults.

**Cannot be achieved using table input value defaults, and pedestrian modes are provided to the level of service letter grade (including F) is not achieveable, because there is no maximum vehicle volume threshold using table input value defaults.

⁸⁷

02/22/20

ATS - Average Travel Speed

% FFS = Percent Free Flow Speed

v/c = Domand to Capacity Ratio

TABLE 4 - 2 (continued)

'Ų

AREAS TRANSITIONING INTO URBANIZED AREAS OR AREAS OVER 5,000 NOT IN URBANIZED AREAS GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S

INPUT VALUE ASSUMPTIONS

		UNINTERRUPTED FLOW FACILITIES	ES
	Freemays	AH4	Hiphways
ROADWAY CHARACATERISTICS	Class		
Number of through lause	4-10	2	4-6
Posted speed (mpli)	70	50	95
Free flow speed (upli)	75	55	55
Basio segment lengdt (ml)	3		
Interchange spacing por mile	4		
Median (a,y)		-	>
Left turn lancs (n,y)		^	7
Temsin (r,l)	-	1	
% по ранзіпд		09	
Peasing lunes (n,y)			
TRAFFIC CHARACTERISTICS		1	
Planning analysis hour factor (K)	0,100	960'0	9000
Directional distribution factor (D)	0.55	0.55	0.55
Peak hour factor (PHP)	0,95	0.910	0160
Buse capacity (pephpl)		1700	2100
Heavy veluble parcent	9.0	4.0	4.0
Local adjustment factor	0.95	0.95	0.05
			200

					INTERE	INTERRUPTED FLOW FACILITIES	FACILITIES				
			State	State Arterials				Non-State Roadways	lwavs	Hevela	Perloctrion
ROADWAY CHARACTERISTICS	C	Class I	כו	Class II	5	Class III	Major	Maler City/County	Other Signalized	Clear	1
Number of through lanes	2.	4-6	2	4-6	2	4-6	2	4-6	2-4	7	A A
Posted speed (mph)	45	50	45	45	35	35	34	9		99	90
Free flow speed (mph)	50	55	50	50	8	40	45	45		45	de la
Modian type (n,ur,t)	п	ı		1	a	1	2			-	-
Left tum lanes (a,y)	٨	٨	`	^	*	٨	^	,	,		-
Paved shoulder/bioyole lane (n,y) 1		r							-	2,60%	\
Outside Isse width (n,t,w)										101000	-
Pavement condition (u.l.d)											-
Sidewalk (a,y)											50% v
Sidewalk/roadway separation (a.t.w)	}										47000
Sidawalk/roadway protective barrier (n,y)											_ ,
TRAIFFIC CHARACTERISTICS											
Plauning analysis hour factor (K)	0.096	960'0	0.096	9600	960'0	960'0	960'0	960'0	960.0	960.0	900 0
Directional distribution fector (D)	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Peak hour factor (PHIF)	0.910	0.910	0,910	0.910	0.910	0.910	0.910	0.910	0.910	0.910	0.910
Bese saturation flow rate (pophpl)	1900	1900	1900	1900	1900	0061	1900	1900	1900	1900	1900
Heavy volucio percent	3.0	3.0	3.0	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Local adjustment fector	0.98	96.0	0.95	0.95	0.92	0.92	0.95	0.95	0.92	0.95	56.0
% turns from exclusive turn lance	12	12	12	12	12	12	4	14	2	1.2	13
CONTROL CHARACTERISTICS											7,
Signatized intersections per mile	1.5	1.0	3.0	3.0	5.0	5.0	3.0	3.0		3.0	9.0
Arrival type (1-6)	3	3	4	4	4	4	4	4	3	4	4
Signel type (a,s,f)		m	S	8	9	80		100			
Cycle length (C)	120	120	120	120	120	120	120	120	120	120	120
Uffertive green rado (g/C)	0.44	0.44	0.44	4 .0	4.0	0.44	0.41	0.41	0.31	49.0	40

LEVEL OF SERVICE THRESHOLDS

								THE TANK	THE STREET STREET			
Итентаун	тауя			Ughwaya		State	Sinte Two-Way Arterial	ilali	Non-State Roadway	Hosdways	Dicycle	Pedentrian
Class II 7		Ĺ	[wo-Lane	Mudi	Autilians	Class I	Class II	Class III	Major City/County			
v/o Donaity	Demaily		% ITFS	۸/۵	Density	ATS	ATS	ATS	ATS	Control Delay	Score	Score
≤0.34 ≤11	<11		> 0.917	≤ 0.29	11.5	> 42 mpli	> 35 taptu	> 30 mph	~35mph	< 10 sec	<1.5	\$1.5
< 0.56 < 18	≥ 18		> 0.833	≤ 0.47	81 >1	> 34 uppl	> 28 ampti	> 24 mpls	> 28 mpli	< 20 800	<2.5	<2.5
< 0.76 < 26	> 20	Ļ.,	> 0.750	₹0.08	≥ 26	> 27 unplu	> 22 mph	> 18 mpt	> 22 mph	< 35 800	<3.5	23.5
< 0.90 < 35	<35	_	> 0.667	₹0.88	\$55	> 21 mplı	> 17 mph	> 14 mph	17 uph	< 55 sec	<4.5	5 4 5
<1.00	<45		> 0.583	<1.00	- -	> 16 mpl	> 13 mph	> 10 mph	> 13 mpli	< 80 geo	<55	> > >
> 1.00 > 45	>45	L-	≤0.583	>1.00	14<	10 mph	< 13 mph	< 10 mph	< 13 mol	> 80 grau	>5.5	554

APPENDIX F:

TOWN OF GILBERT STANDARD CROSS SECTIONS

APPENDIX G:

TOWN OF GILBERT COMMENTS AND RESPONSE MEMORANDUM

3707 North 7th Street • Suite 235 • Phoenix • AZ • 85014 Phone: 602 • 277 • 4224 Fax: 602 • 277 • 4228 e-mail: task@taskeng.net

November 7, 2006

MEMORANDUM

TO:

Rick A, Town of Gilbert

FROM:

Ken Howell, P.E.

RE: Response to Comments on Cooley Station Village Center & Business Park

The following summarizes responses to each comment made by the Town of Gilbert dated September 15, 2006, concerning the Cooley Station Traffic Impact Study, dated August 16, 2006. These responses have been incorporated into this final revised traffic impact study. Each comment is listed verbatim followed by a summary of how the comment is addressed or is incorporated into the final report.

1. Report should indicate that trip generation, trip distribution and level of service are to be performed in accordance with the Institute of Transportation Engineers Trip Generation Manual 7th Edition and the Maricopa Association of Governments publications. The traffic stop sign and signal warrant analysis are to be performed in accordance with the Arizona Department of Transportation policies and the Manual on Traffic Control Devices.

The source for trip rates in this study were *Trip Generation, Seventh Edition*, 2003, and the *Trip Generation Handbook*, 2nd *Edition, June 2004*, published by the Institute of Transportation Engineers (ITE). The site trips were distributed proportionally to the sum of Year 2020 population and employment forecasts within ten miles of the center of the site. The projections used for the trip distribution were obtained from Year 2020 Population and Employment projections by the Maricopa Association of Government (MAG).

For Year 2025, critical intersections were analyzed using the methodologies presented in the *Highway Capacity Manual*, 2000 Edition and were evaluated using the *HCS*+ software. This is a standard software package used analyze both signalized and STOP sign controlled intersections. According to the information provided by McTrans, the developers of HCS+,

"The Highway Capacity Software (HCS) is developed and maintained by McTrans as part of its user-supported software maintenance as a faithful implementation of the Highway Capacity Manual (HCM) procedures... The Highway Capacity Manual (© 2000 National Academy of Sciences) is the basis for all capacity and level of service computations included in HCS.... The Manual on Uniform Traffic

d

d

Control Devices (MUTCD) is the basis for all signal warrant computations included in HCS."

For Year 2015, generalized average daily traffic (ADT) analysis was completed to determine the estimated number of lanes and level of service. These daily service volumes were taken from Table 4-2 of *Quality/Level of Service Handbook*, prepared by State of Florida Department of Transportation, 2002. The <u>Transportation Impact Analysis for Site Development</u>, An ITE Proposed Recommended Practice, refers to the Florida Department of Transportation method as an example of a planning level analysis for determining level of service.

The Maricopa Department of Transportation (MCDOT) procedures for determining if traffic signals are warranted on the basis of estimates of average daily traffic (ADT) were used. These procedures convert the major eight hour volume warrant of the Manual on Uniform Traffic Control Devices (MUTCD) into estimates of daily traffic, as appropriate for comparison with the daily traffic forecasts prepared for this report. The procedures and recommendations are discussed in the SIGNAL WARRANTS section that has been added to the revised report.

All procedures used in this report are standard, state of the practice procedures for the completion of traffic impact studies.

2. Page 3, 2nd line, the phrase "located south of Recker" should state "located south of Ray Road".

This has been changed in the revised report.

3. Page 16, figures 5-1 and 5-2, turning movement counts are missing from turning movement diagrams A,B,C,D,H,I,N and S. In addition figures 5-1 and 5-2 do not identify the year for the Peak Hour Study Area traffic.

The study area traffic identified on Figures 5-1 and 5-2 are for full buildout of the site. This is used for both the Year 2015 and Year 2025 total traffic volumes, as this represent the ultimate amount of traffic generated by the development. Based on this, a year is not indicated on the Study Area Traffic graphic.

The turning movements on Figures 5-1 and 5-2 are for traffic traveling to and from the developments located in the study area. Traffic traveling through the study area that are not traveling to a site within the study area are not included in these turning movements, but are reflected in background traffic volumes. Therefore, some turns may be zero at some intersections in Figures 5-1 and 5-2. This issue is discussed further in response to Comment 4 below.

4. Page 25, figure 11-1, turning movement counts are missing from turning movement diagrams B,C,D,H and I.

De minimus turns were added to the total traffic in locations where low (or no) turning movements were projected. The intersections in diagrams B, C, D, H, and I on Figure 11-1 have been adjusted to add these de minimus turns. This represents minor turning movements, of 5 per hour, or 2 per hour for low volume intersections.

5. Page 31, under Traffic Signals, Williams Field Road and access 1 and Williams Field and access 2 are identified as being recommended for traffic signals, however, they are not identified on page 27, figure 12 where all other signal recommendations are identified.

Traffic signals are recommended at Williams Field Road/Access 1 and Williams Field Road/Access 2 for Year 2025. Year 2025 recommendations are shown on Figure 13-1 and 13-2. Year 2015 recommendations are shown on Figure 12.

The SIGNAL WARRANT and RECOMMENDATION sections have been revised to clarify the recommendation year for the signals.

6. Page 31, although this page identifies where right-turn deceleration lanes should be provided it does not address where dual left-turn lanes may need to be provided.

Dual left turn lanes have not been recommended for any intersections analyzed in this report. The graphics have been updated to reflect this.

7. Page 32, under the heading Year 2015 conditions, the last bullet states that warranted traffic signals for 2015 are shown on figure 8, however, it is shown on figure 12.

This has been changed in the revised report.

8. Page 32, under Year 2025 conditions the last bullet states that Power Road and Ray Road are recommended for 6 lanes for the year 2025. The study should indicate that this is per the Towns standard since the study data may not support the 6 lanes.

This has been added to the above referenced recommendation in the revised report.

9. Page 33, under traffic signals recommended locations, please see comments in 5 above.

The SIGNAL WARRANT and RECOMMENDATION sections have been revised to clarify the recommendation year for signals.

I hope this addresses the remaining issues regarding this report. If there are any further comments, or if I can be of any further assistance, please contact me at (602) 277-4224, or khowell@taskeng.net. Thank you.

H:\JobFiles\2302.04\2302.04A\Response to Comments 2302.04A.doc

TOWN OF GILBERT - TRAFFIC ENGINEERING REVIEW COMMENT SHEET

Project Name: Location: Cooley Station Village Center & Business Park

Williams Field and Recker

Date:

9-15-2006

Reviewer: Phone No.:

Rick A 6841

Review No.:

Consultant:
Plans Sealed By:

Signature of

(

Sheet Number	Summary of Redline Comments	Consultant Reply
1. 2. 3. 4.	Traffic Impact Study Report should indicate that trip generation, trip distribution and level of service are to be performed in accordance with the Institute of Transportation Engineers Trip Generation Manual 7 th Edition and the Maricopa Association of Governments publications. The traffic stop sign and signal warrant analysis are to be performed in accordance with the Arizona Department of Transportation policies and the Manual on Traffic Control Devices. Page 3, 2 nd line, the phrase "located south of Recker" should state "located south of Ray Road". Page 16, figures 5-1 and 5-2, turning movement counts are missing from turning movement diagrams A,B,C,D,H,I,N and S. In addition figures 5-1 and 5-2 do not identify the year for the Peak Hour Study Area traffic. Page 25, figure 11-1, turning movement counts are missing from turning movement diagrams B,C,D,H and I.	
	Page 31, under Traffic Signals, Williams Field Road and access 1 and Williams Field and access 2 are identified as being recommended for traffic signals, however, they are not identified on page 27, figure 12 where all other signal recommendations are identified. Page 31, although this page identifies where right-turn deceleration lanes should be provided it does not address where dual left-turn lanes may need to be provided.	
8.		,
9.	Page 33, under traffic signals recommended locations, please see comments in 5 above.	

APPENDIX H:

SIGNAL WARRANT PROCEDURES

ENGINEERING DIVISION

TRAFFIC ENGINEERING BRANCH

MARICOPA COUNTY DEPARTMENT OF TRANSPORTATION

Policy/Procedure Guideline

SECTION 4:

Traffic Signals

SUBJECT 4.6:

Evaluation of Future Traffic Signal Needs

EFFECTIVE DATE:

April 30, 1997

PARAGRAPH:

Purpose
 Description
 Exhibits
 Background
 Authorization

6. References

7. Attachments

1. PURPOSE:

This PPG sets forth the procedure and criteria to be used in evaluating future traffic signal needs on projects in the Capital Improvement Project (CIP) program, or in any studies undertaken by or submitted to MCDOT.

2. DESCRIPTION:

ADT volume warrant. This warrant applies at a new intersection, an intersection revised by a proposed roadway construction project, or at the driveway of a new commercial or residential development, and is met when the following requirement is satisfied:

The estimated ADT on the major street and on the higher volume minor street or driveway approach to the intersection equals or exceeds the values in the following table: